28,824 research outputs found
Hawking Radiation of Dirac Particles in an Arbitrarily Accelerating Kinnersley Black Hole
Quantum thermal effect of Dirac particles in an arbitrarily accelerating
Kinnersley black hole is investigated by using the method of generalized
tortoise coordinate transformation. Both the location and the temperature of
the event horizon depend on the advanced time and the angles. The Hawking
thermal radiation spectrum of Dirac particles contains a new term which
represents the interaction between particles with spin and black holes with
acceleration. This spin-acceleration coupling effect is absent from the thermal
radiation spectrum of scalar particles.Comment: Revtex, 12pt, 16 pages, no figure, to appear in Gen. Rel. Grav. 34
(2002) N0.
Hawking Radiation of an Arbitrarily Accelerating Kinnersley Black Hole: Spin-Acceleration Coupling Effect
The Hawking radiation of Weyl neutrinos in an arbitrarily accelerating
Kinnersley black hole is investigated by using a method of the generalized
tortoise coordinate transformation. Both the location and temperature of the
event horizon depend on the time and on the angles. They coincide with previous
results, but the thermal radiation spectrum of massless spinor particles
displays a kind of spin-acceleration coupling effect.Comment: 8 pages, no figure, revtex 4.0, revisted version with typesetting
errors and misprint correcte
Neutron Calibration Sources in the Daya Bay Experiment
We describe the design and construction of the low rate neutron calibration
sources used in the Daya Bay Reactor Anti-neutrino Experiment. Such sources are
free of correlated gamma-neutron emission, which is essential in minimizing
induced background in the anti-neutrino detector. The design characteristics
have been validated in the Daya Bay anti-neutrino detector.Comment: 13 pages, 7 figure
Dynamic Scheduling Algorithm in Cyber Mimic Defense Architecture of Volunteer Computing
Volunteer computing uses computers volunteered by the general public to do distributed scientific computing. Volunteer computing is being used in high-energy physics, molecular biology, medicine, astrophysics, climate study, and other areas. These projects have attained unprecedented computing power. However, with the development of information technology, the traditional defense system cannot deal with the unknown security problems of volunteer computing. At the same time, Cyber Mimic Defense (CMD) can defend the unknown attack behavior through its three characteristics: dynamic, heterogeneous, and redundant. As an important part of the CMD, the dynamic scheduling algorithm realizes the dynamic change of the service centralized executor, which can enusre the security and reliability of CMD of volunteer computing. Aiming at the problems of passive scheduling and large scheduling granularity existing in the existing scheduling algorithms, this article first proposes a scheduling algorithm based on time threshold and task threshold and realizes the dynamic randomness of mimic defense from two different dimensions; finally, combining time threshold and random threshold, a dynamic scheduling algorithm based on multi-level queue is proposed. The experiment shows that the dynamic scheduling algorithm based on multi-level queue can take both security and reliability into account, has better dynamic heterogeneous redundancy characteristics, and can effectively prevent the transformation rule of heterogeneous executors from being mastered by attackers
Molecular Cloning and Identification of Novel ω-gliadin Genes from Species
Gliadin is a main component of gluten proteins that affect functional properties of bread making and contributes to the viscous nature of doughs. In this study, thirteen novel ω-gliadin genes were identified in several Triticum species, which encode the ARH-, ATDand ATN-type proteins. Two novel types of ω-gliadins: ATD- and ATN- have not yet been reported. The lengths of 13 sequences were ranged from 927 to 1269 bp and the deduced mature proteins were varied from 309 to 414 residues. All 13 genes were pseudogenes because of the presence of internal stop codons. The primary structure of these ω-gliadin genes included a signal peptide, a conserved N-terminal domain, a repetitive domain and a conserved C-terminus. In this paper, we first characterize ω-gliadin genes from T. timopheevi ssp. timopheevi and T. timopheevi ssp. araraticum. The ω-gliadin gene variation and the evolutionary relationship of ω-gliadin family genes were also discussed
- …