11,174 research outputs found

    Wannier-based definition of layer polarizations in perovskite superlattices

    Full text link
    In insulators, the method of Marzari and Vanderbilt [Phys. Rev. B {\bf 56}, 12847 (1997)] can be used to generate maximally localized Wannier functions whose centers are related to the electronic polarization. In the case of layered insulators, this approach can be adapted to provide a natural definition of the local polarization associated with each layer, based on the locations of the nuclear charges and one-dimensional Wannier centers comprising each layer. Here, we use this approach to compute and analyze layer polarizations of ferroelectric perovskite superlattices, including changes in layer polarizations induced by sublattice displacements (i.e., layer-decomposed Born effective charges) and local symmetry breaking at the interfaces. The method provides a powerful tool for analyzing the polarization-related properties of complex layered oxide systems

    Light Hadron Spectroscopy and Decay at BESIII

    Full text link
    Light hadron spectroscopy plays an important role in understanding the decay dynamics of unconventional hadronic states, such as strangeonium and glueballs. BESIII provides an ideal avenue to search for these exotic states thanks to a huge amount of data recorded at various energy points in the tau-charm mass region including J/psi resonance. This report summarizes recent results of the BESIII experiment related to the glueballs and strangeonium-like states.Comment: 6 pages, 5 figures, Conference proceeding of FPCP-201

    Synthesis of Hydroxy-α-sanshool

    Get PDF
    postprin

    ILP formulations for p-cycle design without candidate cycle enumeration

    Get PDF
    The concept of p-cycle (preconfigured protection cycle) allows fast and efficient span protection in wavelength division multiplexing (WDM) mesh networks. To design p-cycles for a given network, conventional algorithms need to enumerate cycles in the network to form a candidate set, and then use an integer linear program (ILP) to find a set of p-cycles from the candidate set. Because the size of the candidate set increases exponentially with the network size, candidate cycle enumeration introduces a huge number of ILP variables and slows down the optimization process. In this paper, we focus on p-cycle design without candidate cycle enumeration. Three ILPs for solving the problem of spare capacity placement (SCP) are first formulated. They are based on recursion, flow conservation, and cycle exclusion, respectively. We show that the number of ILP variables/constraints in our cycle exclusion approach only increases linearly with the network size. Then, based on cycle exclusion, we formulate an ILP for solving the joint capacity placement (JCP) problem. Numerical results show that our ILPs are very efficient in generating p-cycle solutions. © 2009 IEEE.published_or_final_versio

    Monitoring trail: on fast link failure localization in all-optical WDM mesh networks

    Get PDF
    We consider an optical layer monitoring mechanism for fast link failure localization in all-optical wavelength-division-multiplexing (WDM) mesh networks. A novel framework of all-optical monitoring, called monitoring trail (m-trail), is introduced. It differs from the existing monitoring cycle (m-cycle) method by removing the cycle constraint. As a result, m-trail provides a general all-optical monitoring structure, which includes simple, nonsimple m-cycles, and open trails as special cases. Based on an in-depth theoretical analysis, we formulate an efficient integer linear program (ILP) for m-trail design to achieve unambiguous localization of each link failure. The objective is to minimize the monitoring cost (i.e., monitor cost plus bandwidth cost) of all m-trails in the solution. Numerical results show that the proposed m-trail scheme significantly outperforms its m-cycle-based counterpart.published_or_final_versio

    Monitoring Cycle Design for Fast Link Failure Localization in All-Optical Networks

    Get PDF
    A monitoring cycle (m-cycle) is a preconfigured optical loop-back connection of supervisory wavelengths with a dedicated monitor. In an all-optical network (AON), if a link fails, the supervisory optical signals in a set of m-cycles covering this link will be disrupted. The link failure can be localized using the alarm code generated by the corresponding monitors. In this paper, we first formulate an optimal integer linear program (ILP) for m-cycle design. The objective is to minimize the monitoring cost which consists of the monitor cost and the bandwidth cost (i.e., supervisory wavelength-links). To reduce the ILP running time, a heuristic ILP is also formulated. To the best of our survey, this is the first effort in m-cycle design using ILP, and it leads to two contributions: 1) nonsimple m-cycles are considered; and 2) an efficient tradeoff is allowed between the monitor cost and the bandwidth cost. Numerical results show that our ILP-based approach outperforms the existing m-cycle design algorithms with a significant performance gain.published_or_final_versio

    Mycorrhizal symbiosis enhances Phalaenopsis orchid’s growth and resistance to Erwinia chrysanthemi

    Get PDF
    Phalaenopsis is the most important potted orchid genus in the world. However, the low seedling survival rate, long vegetative growth period and disease outbreak are problems in production. Orchid micorrhizal fungi (OMF) are their obligate partners in orchid physiology. Orchids use their symbionts to gain access to organic and mineral nutrients by increasing nutrient absorption and translocation to plants under natural conditions. The benefit of orchid mycorrhizal symbiosis using Phalaenopsis as model plants was conducted. We inoculated in vitro grown plantlets of Doritaenopsis Taisuco Wonder ‘King Car Butterfly KC1111’ and Phalaenopsis Tai Lin Redangel ‘V31‘ with two OMF isolates, Ceratobasidium sp. AG-A (R02) and Rizoctonia solani AG-6 (R04). The effects of OMFs on orchid plant growth and Erwinia soft rot progression were examined after two months of ex vitro growth. The results showed that the presence of OMFs in Phalaenopsis roots significantly increased the growth and soft rot resistance of plants. Selectivity of cultivar type to different OMF was also observed. The relevance of this findings and future work are discussed.Key words: Phalaenopsis, orchid micorrhizal fungi, orchid, cultivar type

    Characterization and evaluation of Ni/SiO catalysts for hydrogen production and tar reduction from catalytic steam pyrolysis-reforming of refuse derived fuel

    Get PDF
    A series of Ni/SiO catalysts have been prepared and investigated for their suitability for hydrogen production and tar reduction in a two-stage pyrolysis-reforming system, using refuse derived fuel (RDF) as the raw material. Experiments were conducted at a pyrolysis temperature of 600°C, and a reforming temperature of 800°C. The product gases were analysed by gas chromatography (GC) and the condensed fraction was collected and quantified using gas chromatography-mass spectrometry (GC-MS). The effects of the catalyst preparation method, nickel content and the addition of metal promoters (Ce, Mg, Al), were investigated. Catalysts were characterised using BET surface area analysis, temperature programmed oxidation (TPO), and scanning electron microscopy (SEM). The TPO and SEM analysis of the reacted catalysts showed that amorphous type carbons tended to be deposited over the Ni/SiO catalysts prepared by impregnation, while filamentous type carbons were favoured with the sol-gel prepared catalysts. The influence of catalyst promoters (Ce, Mg, Al) added to the Ni/SiO catalyst prepared by the sol-gel method was found not to be significant, as the H production was not increased and the tar formation was not reduced with the metal-added catalyst. The highest H concentration of 57.9vol.% and lower tar amount produced of 0.24mg/g; were obtained using the 20wt.% Ni/SiO catalyst prepared by sol-gel. On the other hand a low catalytic activity for H production and higher tar produced were found for the impregnated series of catalysts, which might be due to the smaller surface area, pore size and due to the formation of amorphous carbons on the catalyst surface. Alkenes and alcohol functional groups were mainly found in the analysed tar samples, with major concentrations of styrene, phenol, indene, cresols, naphthalene, fluorene, and phenanthrene
    • …
    corecore