131,107 research outputs found

    X-ray Polarization Signatures of Compton Scattering in Magnetic Cataclysmic Variables

    Full text link
    Compton scattering within the accretion column of magnetic cataclysmic variables (mCVs) can induce a net polarization in the X-ray emission. We investigate this process using Monte Carlo simulations and find that significant polarization can arise as a result of the stratified flow structure in the shock-ionized column. We find that the degree of linear polarization can reach levels up to ~8% for systems with high accretion rates and low white-dwarf masses, when viewed at large inclination angles with respect to the accretion column axis. These levels are substantially higher than previously predicted estimates using an accretion column model with uniform density and temperature. We also find that for systems with a relatively low-mass white dwarf accreting at a high accretion rate, the polarization properties may be insensitive to the magnetic field, since most of the scattering occurs at the base of the accretion column where the density structure is determined mainly by bremsstrahlung cooling instead of cyclotron cooling.Comment: 7 pages, 8 figures, accepted by MNRA

    Accretion column eclipses in the X-ray pulsars GX 1+4 and RX J0812.4-3114

    Full text link
    Sharp dips observed in the pulse profiles of three X-ray pulsars (GX 1+4, RX J0812.4-3114 and A 0535+26) have previously been suggested to arise from partial eclipses of the emission region by the accretion column occurring once each rotation period. We present pulse-phase spectroscopy from Rossi X-ray Timing Explorer satellite observations of GX 1+4 and RX J0812.4-3114 which for the first time confirms this interpretation. The dip phase corresponds to the closest approach of the column axis to the line of sight, and the additional optical depth for photons escaping from the column in this direction gives rise to both the decrease in flux and increase in the fitted optical depth measured at this phase. Analysis of the arrival time of individual dips in GX~1+4 provides the first measurement of azimuthal wandering of a neutron star accretion column. The column longitude varies stochastically with standard deviation 2-6 degrees depending on the source luminosity. Measurements of the phase width of the dip both from mean pulse profiles and individual eclipses demonstrates that the dip width is proportional to the flux. The variation is consistent with that expected if the azimuthal extent of the accretion column depends only upon the Keplerian velocity at the inner disc radius, which varies as a consequence of the accretion rate Mdot.Comment: 7 pages, 5 figures, accepted by MNRAS. Included reference

    Search for Higgs Bosons Decay H→γγH\to \gamma\gamma Using Vector Boson Fusion

    Full text link
    The sensitivity of the ATLAS experiment to low mass SM Higgs produced via Vector Boson Fusion mechanism with H→γγH\to \gamma\gamma is invest igated. A cut based event selection has been chosen to optimize the expected signal significance with this decay mode. A signal significance of 2. 2σ \sigma may be achieved for M_H=130 \gev with 30 fb−1^{-1} of accumulated luminosity

    A method to find unstable periodic orbits for the diamagnetic Kepler Problem

    Full text link
    A method to determine the admissibility of symbolic sequences and to find the unstable periodic orbits corresponding to allowed symbolic sequences for the diamagnetic Kepler problem is proposed by using the ordering of stable and unstable manifolds. By investigating the unstable periodic orbits up to length 6, a one to one correspondence between the unstable periodic orbits and their corresponding symbolic sequences is shown under the system symmetry decomposition

    Small Footprint Multilayered Millimeter-Wave Antennas and Feeding Networks for Multi-Dimensional Scanning and High-Density Integrated Systems

    Get PDF
    This paper overviews the state-of-the-art of substrate integrated waveguide (SIW) techniques in the design and realization of innovative low-cost, low-profile and low-loss (L3) millimeter-wave antenna elements, feeding networks and arrays for various wireless applications. Novel classes of multilayered antenna structures and systems are proposed and studied to exploit the vertical dimension of planar structures to overcome certain limita-tions in standard two-dimensional (2-D) topologies. The developed structures are based on two techniques, namely multi-layer stacked structures and E-plane corners. Differ-ent E-plane structures realised with SIW waveguide are presented, thereby demonstrating the potential of the proposed techniques as in multi-polarization antenna feeding. An array of 128 elements shows low SLL and height gain with just 200g of the total weight. Two versions of 2-D scanning multi-beam are presented, which effectively combine frequency scanning with beam forming networks. Adding the benefits of wide band performance to the multilayer structure, two bi-layer structures are investigated. Different stacked antennas and arrays are demonstrated to optimise the targeted antenna performances in the smallest footprint possible. These structures meet the requirement for developing inexpensive compact millimeter-wave antennas and antenna systems. Different structures and architectures are theoretically and experimentally studied and discussed for specific space- and ground-based appli-cations. Practical issues such as high-density integration and high-volume manufacturability are also addressed

    Application of quasi-homogeneous anisotropic laminates in grid-stiffened panel design

    Get PDF
    Composite laminates are derived for standard configurations with quasi-homogeneous anisotropic properties, whereby in-plane and out-of-plane stiffness properties are concomitant. Dimensionless parameters, and their relationship to the well-known ply- orientation-dependent lamination parameters, are also developed from which the elements of the extensional and bending stiffness matrices are readily calculated for any fiber/resin properties. The definitive list of laminate configurations for up to 21 plies is presented, together with graphical representations of the lamination parameter design space for standard ply orientations +45, -45, 0 and 90 degrees. Finally, the potential of quasi-homogeneous anisotropic laminates as an optimum design solution for anisogid structures is explored for cases where buckling and strength constraints are both active

    A search for electron cyclotron maser emission from compact binaries

    Full text link
    Unipolar induction (UI) is a fundamental physical process, which occurs when a conducting body transverses a magnetic field. It has been suggested that UI is operating in RX J0806+15 and RX J1914+24, which are believed to be ultra-compact binaries with orbital periods of 5.4 min and 9.6 min respectively. The UI model predicts that those two sources may be electron cyclotron maser sources at radio wavelengths. Other systems in which UI has been predicted to occur are short period extra-solar terrestrial planets with conducting cores. If UI is present, circularly polarised radio emission is predicted to be emitted. We have searched for this predicted radio emission from short period binaries using the VLA and ATCA. In one epoch we find evidence for a radio source, coincident in position with the optical position of RX J0806+15. Although we cannot completely exclude that this is a chance alignment between the position of RX J0806+15 and an artifact in the data reduction process, the fact that it was detected at a significance level of 5.8 sigma and found to be transient, suggests that it is more likely that RX J0806+15 is a transient radio source. We find an upper limit on the degree of circular polarisation to be ~50%. The inferred brightness temperature exceeds 10^18 K, which is too high for any known incoherent process, but is consistent with maser emission and UI being the driving mechanism. We did not detect radio emission from ES Cet, RX J1914+24 or Gliese 876.Comment: Accepted for publication MNRA
    • 

    corecore