86 research outputs found

    Two-and-a-half Order Score-based Model for Solving 3D Ill-posed Inverse Problems

    Full text link
    Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are crucial technologies in the field of medical imaging. Score-based models have proven to be effective in addressing different inverse problems encountered in CT and MRI, such as sparse-view CT and fast MRI reconstruction. However, these models face challenges in achieving accurate three dimensional (3D) volumetric reconstruction. The existing score-based models primarily focus on reconstructing two dimensional (2D) data distribution, leading to inconsistencies between adjacent slices in the reconstructed 3D volumetric images. To overcome this limitation, we propose a novel two-and-a-half order score-based model (TOSM). During the training phase, our TOSM learns data distributions in 2D space, which reduces the complexity of training compared to directly working on 3D volumes. However, in the reconstruction phase, the TOSM updates the data distribution in 3D space, utilizing complementary scores along three directions (sagittal, coronal, and transaxial) to achieve a more precise reconstruction. The development of TOSM is built on robust theoretical principles, ensuring its reliability and efficacy. Through extensive experimentation on large-scale sparse-view CT and fast MRI datasets, our method demonstrates remarkable advancements and attains state-of-the-art results in solving 3D ill-posed inverse problems. Notably, the proposed TOSM effectively addresses the inter-slice inconsistency issue, resulting in high-quality 3D volumetric reconstruction.Comment: 10 pages, 13 figure

    Spatial analysis of the effects of PM2.5 on hypertension among the middle-aged and elderly people in China.

    Get PDF
    Hypertension is currently one of the most common chronic diseases with high global prevalence associated with a huge social and economic burden. In recent years, air pollution has become a focus of research, especially the effects of PM2.5 on hypertension. However, few studies have considered the spatial properties of the sample; thus, the results might be unreliable. Based on the China Health and Retirement Longitudinal Study (CHARLS) and the Environmental Status Bulletin for each province in China, we used the extended shared component model (SCM) to fit the spatial variation of hypertension risk and to reveal the impact of PM2.5 on hypertension in males and females. Our results revealed that the crude prevalence of hypertension for the whole population in China was 32.74% in 2015, with the prevalence in men experiencing slightly higher than that in women (32.92% vs. 32.58%). We found that the distribution of hypertension prevalence exhibited obvious spatial aggregation for the whole population in China (Moran’s I = 0.39, P = 0.001), with similar results in both men (Moran’s I = 0.18, P = 0.027) and women (Moran’s I = 0.52, P = 0.001). Furthermore, the smoothed results obtained using the SCM indicated that some eastern and central provinces had relatively higher hypertension risk, while the risk in southeastern provinces was much lower. The risk was also relatively lower in most western provinces, except for some northwestern regions. Notably, our results showed that PM2.5 was a risk factor for hypertension, and the impact of PM2.5 on women was slightly greater than that on men, with odds ratios (OR) of 1.063 (1.041, 1.086) and 1.048 (1.025, 1.071), respectively. Our findings suggest the existence of distinct spatial differences in the prevalence of hypertension and small sex-related differences in the risk of hypertension in China

    GlanceSeg: Real-time microaneurysm lesion segmentation with gaze-map-guided foundation model for early detection of diabetic retinopathy

    Full text link
    Early-stage diabetic retinopathy (DR) presents challenges in clinical diagnosis due to inconspicuous and minute microangioma lesions, resulting in limited research in this area. Additionally, the potential of emerging foundation models, such as the segment anything model (SAM), in medical scenarios remains rarely explored. In this work, we propose a human-in-the-loop, label-free early DR diagnosis framework called GlanceSeg, based on SAM. GlanceSeg enables real-time segmentation of microangioma lesions as ophthalmologists review fundus images. Our human-in-the-loop framework integrates the ophthalmologist's gaze map, allowing for rough localization of minute lesions in fundus images. Subsequently, a saliency map is generated based on the located region of interest, which provides prompt points to assist the foundation model in efficiently segmenting microangioma lesions. Finally, a domain knowledge filter refines the segmentation of minute lesions. We conducted experiments on two newly-built public datasets, i.e., IDRiD and Retinal-Lesions, and validated the feasibility and superiority of GlanceSeg through visualized illustrations and quantitative measures. Additionally, we demonstrated that GlanceSeg improves annotation efficiency for clinicians and enhances segmentation performance through fine-tuning using annotations. This study highlights the potential of GlanceSeg-based annotations for self-model optimization, leading to enduring performance advancements through continual learning.Comment: 12 pages, 10 figure

    The Nematic Energy Scale and the Missing Electron Pocket in FeSe

    Get PDF
    Superconductivity emerges in proximity to a nematic phase in most iron-based superconductors. It is therefore important to understand the impact of nematicity on the electronic structure. Orbital assignment and tracking across the nematic phase transition prove to be challenging due to the multiband nature of iron-based superconductors and twinning effects. Here, we report a detailed study of the electronic structure of fully detwinned FeSe across the nematic phase transition using angle-resolved photoemission spectroscopy. We clearly observe a nematicity-driven band reconstruction involving dxz, dyz, and dxy orbitals. The nematic energy scale between dxz and dyz bands reaches a maximum of 50 meV at the Brillouin zone corner. We are also able to track the dxz electron pocket across the nematic transition and explain its absence in the nematic state. Our comprehensive data of the electronic structure provide an accurate basis for theoretical models of the superconducting pairing in FeSe

    Virus-induced gene complementation reveals a transcription factor network in modulation of tomato fruit ripening

    Get PDF
    Plant virus technology, in particular virus-induced gene silencing, is a widely used reverse- and forward-genetics tool in plant functional genomics. However the potential of virus technology to express genes to induce phenotypes or to complement mutants in order to understand the function of plant genes is not well documented. Here we exploit Potato virus X as a tool for virus-induced gene complementation (VIGC). Using VIGC in tomato, we demonstrated that ectopic viral expression of LeMADS-RIN, which encodes a MADS-box transcription factor (TF), resulted in functional complementation of the non-ripening rin mutant phenotype and caused fruits to ripen. Comparative gene expression analysis indicated that LeMADS-RIN up-regulated expression of the SBP-box (SQUAMOSA promoter binding protein-like) gene LeSPL-CNR, but down-regulated the expression of LeHB-1, an HD-Zip homeobox TF gene. Our data support the hypothesis that a transcriptional network may exist among key TFs in the modulation of fruit ripening in tomato

    cAMP/CREB-regulated LINC00473 marks LKB1-inactivated lung cancer and mediates tumor growth

    Get PDF
    The LKB1 tumor suppressor gene is frequently mutated and inactivated in non–small cell lung cancer (NSCLC). Loss of LKB1 promotes cancer progression and influences therapeutic responses in preclinical studies; however, specific targeted therapies for lung cancer with LKB1 inactivation are currently unavailable. Here, we have identified a long noncoding RNA (lncRNA) signature that is associated with the loss of LKB1 function. We discovered that LINC00473 is consistently the most highly induced gene in LKB1-inactivated human primary NSCLC samples and derived cell lines. Elevated LINC00473 expression correlated with poor prognosis, and sustained LINC00473 expression was required for the growth and survival of LKB1-inactivated NSCLC cells. Mechanistically, LINC00473 was induced by LKB1 inactivation and subsequent cyclic AMP–responsive element–binding protein (CREB)/CREB-regulated transcription coactivator (CRTC) activation. We determined that LINC00473 is a nuclear lncRNA and interacts with NONO, a component of the cAMP signaling pathway, thereby facilitating CRTC/CREB-mediated transcription. Collectively, our study demonstrates that LINC00473 expression potentially serves as a robust biomarker for tumor LKB1 functional status that can be integrated into clinical trials for patient selection and treatment evaluation, and implicates LINC00473 as a therapeutic target for LKB1-inactivated NSCLC

    The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases

    Get PDF
    Reports on bacteria detected in maternal fluids during pregnancy are typically associated with adverse consequences, and whether the female reproductive tract harbours distinct microbial communities beyond the vagina has been a matter of debate. Here we systematically sample the microbiota within the female reproductive tract in 110 women of reproductive age, and examine the nature of colonisation by 16S rRNA gene amplicon sequencing and cultivation. We find distinct microbial communities in cervical canal, uterus, fallopian tubes and peritoneal fluid, differing from that of the vagina. The results reflect a microbiota continuum along the female reproductive tract, indicative of a non-sterile environment. We also identify microbial taxa and potential functions that correlate with the menstrual cycle or are over-represented in subjects with adenomyosis or infertility due to endometriosis. The study provides insight into the nature of the vagino-uterine microbiome, and suggests that surveying the vaginal or cervical microbiota might be useful for detection of common diseases in the upper reproductive tract.Shenzhen Municipal Government of China [JCYJ20160229172757249, JCYJ20150601090833370]; Danish Strategic Research Council [2106-07-0021]; Ole Romer grant from Danish Natural Science Research Council; Solexa project [272-07-0196]SCI(E)ARTICLE
    • …
    corecore