22 research outputs found

    Evaluation of genipin-crosslinked chitosan hydrogels as a potential carrier for silver sulfadiazine nanocrystals

    Get PDF
    In the present study genipin crosslinked chitosan (CHI) hydrogels, which had been constructed and reported in our previous studies (Lei Gao, et al. Colloids Surf. B Biointerfaces. 2014, 117: 398), were further evaluated for their advantage as a carrier for silver sulfadiazine (AgSD) nanocrystal systems. Firstly, AgSD nanocrystals with a mean particle size of 289 nm were prepared by wet milling method and encapsulated into genipin crosslinked CHI hydrogels. AgSD nanocrystals displayed a uniform distribution and very good physical stability in the hydrogel network. Swelling-dependent release pattern was found for AgSD nanocrystals from hydrogels and the release profile could be well fitted with Peppas equation. When AgSD nanocrystals were encapsulated in hydrogels their fibroblast cytotoxicity decreased markedly, and their antibacterial effects against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were still comparable to unencapsulated AgSD nanocrystals. In vivo evaluation in excision and burn cutaneous wound models in mice showed that AgSD nanocrystal hydrogels markedly decreased the expression of inflammatory cytokine IL-6, but increased the levels of growth factors VEGF-A and TGF-β1. Histopathologically, the wounds treated by hydrogels containing AgSD nanocrystals showed the best healing state compared with commercial AgSD cream, hydrogels containing AgSD bulk powders and blank hydrogels. The wounds treated by AgSD nanocrystal hydrogels were dominated by marked fibroblast proliferation, new blood vessels and thick regenerated epithelial layer. Sirius Red staining assay indicated that AgSD nanocrystal hydrogels resulted in more collagen deposition characterized by a large proportion of type I fibers. Our study suggested that genipin-crosslinked CHI hydrogel was a potential carrier for local antibacterial nanomedicines

    Evaluation of genipin-crosslinked chitosan hydrogels as a potential carrier for silver sulfadiazine nanocrystals

    Get PDF
    This paper was accepted for publication in the journal Colloids and Surfaces B: Biointerfaces and the definitive published version is available at http://dx.doi.org/10.1016/j.colsurfb.2016.06.016In the present study genipin crosslinked chitosan (CHI) hydrogels, which had been constructed and reported in our previous studies (Lei Gao, et al. Colloids Surf. B Biointerfaces. 2014, 117: 398), were further evaluated for their advantage as a carrier for silver sulfadiazine (AgSD) nanocrystal systems. Firstly, AgSD nanocrystals with a mean particle size of 289 nm were prepared by wet milling method and encapsulated into genipin crosslinked CHI hydrogels. AgSD nanocrystals displayed a uniform distribution and very good physical stability in the hydrogel network. Swelling-dependent release pattern was found for AgSD nanocrystals from hydrogels and the release profile could be well fitted with Peppas equation. When AgSD nanocrystals were encapsulated in hydrogels their fibroblast cytotoxicity decreased markedly, and their antibacterial effects against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were still comparable to unencapsulated AgSD nanocrystals. In vivo evaluation in excision and burn cutaneous wound models in mice showed that AgSD nanocrystal hydrogels markedly decreased the expression of inflammatory cytokine IL-6, but increased the levels of growth factors VEGF-A and TGF-β1. Histopathologically, the wounds treated by hydrogels containing AgSD nanocrystals showed the best healing state compared with commercial AgSD cream, hydrogels containing AgSD bulk powders and blank hydrogels. The wounds treated by AgSD nanocrystal hydrogels were dominated by marked fibroblast proliferation, new blood vessels and thick regenerated epithelial layer. Sirius Red staining assay indicated that AgSD nanocrystal hydrogels resulted in more collagen deposition characterized by a large proportion of type I fibers. Our study suggested that genipin-crosslinked CHI hydrogel was a potential carrier for local antibacterial nanomedicines

    Fast and non–derivative method based on high–performance liquid chromatography–charged aerosol detection for the determination of fatty acids from <i>Agastache rugosa</i> (Fisch. et Mey.) O. Ktze. seeds

    No full text
    <p>This study utilised response surface methodology to optimise the conditions for the extraction of <i>A. rugosa</i> seeds oil (ARO). Single–factor experiment and response surface methodology (RSM) were performed to identify the extraction time, liquid–solid ratio and extraction temperature that provided the highest yield of ARO. The optimal extraction time, liquid–solid ratio and extraction temperature were 8 h, 4:1 mL/g and 55 °C. The fatty acids (FAs) content and oil yield obtained through the optimised impregnation–extraction process were 19.67 mg/g and 32.1%. These values matched well with the predicted values. Linolenic acid was identified to be the main active ingredient of ARO. The high–performance liquid chromatography–charged aerosol detection method presented here is fast and does not require derivatisation. Therefore, it could be used to quantitatively analyse the FAs present in ARO and applied to detect compounds with low or no ultraviolet response.</p

    Optimization of Ultrasonic-assisted Extraction of Fatty Acids in Seeds of Brucea Javanica (L.) Merr. from Different Sources and Simultaneous Analysis Using High-Performance Liquid Chromatography with Charged Aerosol Detection

    No full text
    Our research aimed to optimize the oil extraction process and determine the fatty acids in Brucea javanica (L.) Merr. seeds. The extraction technology was optimized using response surface methodology. A Box-Behnken design was employed to investigate the effects of three independent variables on an ultrasonic-assisted extraction technique, namely, sonication time (X1: 20–40 min), liquid–solid ratio (X2: 16:1 mL/g–24:1 mL/g), and ethanol concentration (X3: 90%–100%). The optimum conditions of sonication time, liquid–solid ratio, and ethanol concentration were 40 min, 24:1 mL/g, and 100%, respectively. The content of fatty acids and the oil yield were 14.64 mg/g and 16.87%, respectively, which match well with the predicted models. The optimum number of extraction times was eventually identified as two. A new rapid method for the qualitative and quantitative analysis of the fatty acids of B. javanica (L.) Merr. seed oil using HPLC with a charged aerosol detector was described. The fatty acid contents of 14 batches of B. javanica (L.) Merr. seed oil were determined, and the relevance and difference were analyzed by fingerprint analysis. The fingerprint has five common peaks, and the similarity was greater than 0.991. HPLC analysis represents a specialized and rational approach for the quality identification and comprehensive evaluation of B. javanica (L.) Merr. seed oils

    Time-Course Investigation of Small Molecule Metabolites in MAP-Stored Red Blood Cells Using UPLC-QTOF-MS

    No full text
    Red blood cells (RBCs) are routinely stored for 35 to 42 days in most countries. During storage, RBCs undergo biochemical and biophysical changes known as RBC storage lesion, which is influenced by alternative storage additive solutions (ASs). Metabolomic studies have been completed on RBCs stored in a number of ASs, including SAGM, AS-1, AS-3, AS-5, AS-7, PAGGGM, and MAP. However, the reported metabolome analysis of laboratory-made MAP-stored RBCs was mainly focused on the time-dependent alterations in glycolytic intermediates during storage. In this study, we investigated the time-course of alterations in various small molecule metabolites in RBCs stored in commercially used MAP for 49 days using ultra-high performance liquid chromatography quadruple time-of-flight mass spectrometry (UPLC-QTOF-MS). These alterations indicated that RBC storage lesion is related to multiple pathways including glycolysis, pentose phosphate pathway, glutathione homeostasis, and purine metabolism. Thus, our findings might be useful for understanding the complexity of metabolic mechanisms of RBCs in vitro aging and encourage the deployment of systems biology methods to blood products in transfusion medicine

    Preparation of Chitosan/Clay Composites for Safe and Effective Hemorrhage Control

    No full text
    Uncontrolled hemorrhage from trauma or surgery can lead to death. In this study, chitosan/kaolin (CSK) and chitosan/montmorillonite (CSMMT) composites were prepared from chitosan (CS), kaolin (K), and montmorillonite (MMT) as raw materials to control bleeding. The physiochemical properties and surface morphology of CSK and CSMMT composites were analyzed by Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), zeta potentials, and X-ray fluorescence (XRF). The hemostatic mechanism was measured in vitro by activated partial thromboplastin time (APTT), prothrombin time (PT), in vitro clotting time, erythrocyte aggregation, and thromboelastogram (TEG). The hemostasis ability was further verified by using tail amputation and arteriovenous injury models in rats. The biocompatibility of CSK and CSMMT was evaluated by in vitro hemolysis, cytotoxicity assays, as well as acute toxicity test and skin irritation tests. The results show that CSK and CSMMT are promising composite materials with excellent biocompatibility and hemostatic properties that can effectively control bleeding

    Preparation of Chitosan/Clay Composites for Safe and Effective Hemorrhage Control

    No full text
    Uncontrolled hemorrhage from trauma or surgery can lead to death. In this study, chitosan/kaolin (CSK) and chitosan/montmorillonite (CSMMT) composites were prepared from chitosan (CS), kaolin (K), and montmorillonite (MMT) as raw materials to control bleeding. The physiochemical properties and surface morphology of CSK and CSMMT composites were analyzed by Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), zeta potentials, and X-ray fluorescence (XRF). The hemostatic mechanism was measured in vitro by activated partial thromboplastin time (APTT), prothrombin time (PT), in vitro clotting time, erythrocyte aggregation, and thromboelastogram (TEG). The hemostasis ability was further verified by using tail amputation and arteriovenous injury models in rats. The biocompatibility of CSK and CSMMT was evaluated by in vitro hemolysis, cytotoxicity assays, as well as acute toxicity test and skin irritation tests. The results show that CSK and CSMMT are promising composite materials with excellent biocompatibility and hemostatic properties that can effectively control bleeding

    Local Clays from China as Alternative Hemostatic Agents

    No full text
    In recent years, the coagulation properties of inorganic minerals such as kaolin and zeolite have been demonstrated. This study aimed to assess the hemostatic properties of three local clays from China: natural kaolin from Hainan, natural halloysite from Yunnan, and zeolite synthesized by our group. The physical and chemical properties, blood coagulation performance, and cell biocompatibility of the three materials were tested. The studied materials were characterized by using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). All three clays showed different morphologies and particle size, and exhibited negative potentials between pH 6 and 8. The TGA and DSC curves for kaolin and halloysite were highly similar. Kaolin showed the highest water absorption capacity (approximately 93.8% ± 0.8%). All three clays were noncytotoxic toward L929 mouse fibroblasts. Kaolin and halloysite showed blood coagulation effects similar to that exhibited by zeolite, indicating that kaolin and halloysite are promising alternative hemostatic materials

    An optimized LC-MS/MS method for determination of HYNIC-3PRGD

    No full text
    HYNIC-3PRGD2 is used to prepare a new 99mTc-radiolabeled tracer. HYNIC-3PRGD2, which has a high binding affinity for the integrin αvβ3due to its special structure, has become a promising tumor imaging agent for diagnosis and monitor of the clinical response to therapeutic effects of anti-tumor agents. Here, we developed and validated a method for determination of HYNIC-3PRGD2 concentration in rat plasma using ultra-high performance liquid chromatography-tandem mass spectrometry system. Following sample extraction by methanol precipitation, satisfactory separation through chromatography was achieved on an hydrophilic reverse-phase C18 column AQ (2.1 mm × 100 mm, 2.7 μm) at a flow rate of 0.2 mL·min-1 with an gradient elution using mobile phase consisting of ultrapure water and acetonitrile fortified with 0.1% formic acid respectively. The calibration curve was developed over a linear range of 3.125-100 ng·mL-1 with the lower limit of quantification of 3.125 ng·mL-1. The HYNIC-3PRGD2 and its internal standard c(RGDfK)(RK5) were detected and quantified with the multiple reaction monitoring (MRM) mode on a triple-quadrupole tandem mass spectrometer. This method was successfully validated and applied for pharmacokinetic evaluation of HYNIC-3PRGD2 during pre-clinical experiments
    corecore