92 research outputs found

    MixRT: Mixed Neural Representations For Real-Time NeRF Rendering

    Full text link
    Neural Radiance Field (NeRF) has emerged as a leading technique for novel view synthesis, owing to its impressive photorealistic reconstruction and rendering capability. Nevertheless, achieving real-time NeRF rendering in large-scale scenes has presented challenges, often leading to the adoption of either intricate baked mesh representations with a substantial number of triangles or resource-intensive ray marching in baked representations. We challenge these conventions, observing that high-quality geometry, represented by meshes with substantial triangles, is not necessary for achieving photorealistic rendering quality. Consequently, we propose MixRT, a novel NeRF representation that includes a low-quality mesh, a view-dependent displacement map, and a compressed NeRF model. This design effectively harnesses the capabilities of existing graphics hardware, thus enabling real-time NeRF rendering on edge devices. Leveraging a highly-optimized WebGL-based rendering framework, our proposed MixRT attains real-time rendering speeds on edge devices (over 30 FPS at a resolution of 1280 x 720 on a MacBook M1 Pro laptop), better rendering quality (0.2 PSNR higher in indoor scenes of the Unbounded-360 datasets), and a smaller storage size (less than 80% compared to state-of-the-art methods).Comment: Accepted by 3DV'24. Project Page: https://licj15.github.io/MixRT

    Robust Tickets Can Transfer Better: Drawing More Transferable Subnetworks in Transfer Learning

    Full text link
    Transfer learning leverages feature representations of deep neural networks (DNNs) pretrained on source tasks with rich data to empower effective finetuning on downstream tasks. However, the pretrained models are often prohibitively large for delivering generalizable representations, which limits their deployment on edge devices with constrained resources. To close this gap, we propose a new transfer learning pipeline, which leverages our finding that robust tickets can transfer better, i.e., subnetworks drawn with properly induced adversarial robustness can win better transferability over vanilla lottery ticket subnetworks. Extensive experiments and ablation studies validate that our proposed transfer learning pipeline can achieve enhanced accuracy-sparsity trade-offs across both diverse downstream tasks and sparsity patterns, further enriching the lottery ticket hypothesis.Comment: Accepted by DAC 202

    NetDistiller: Empowering Tiny Deep Learning via In-Situ Distillation

    Full text link
    Boosting the task accuracy of tiny neural networks (TNNs) has become a fundamental challenge for enabling the deployments of TNNs on edge devices which are constrained by strict limitations in terms of memory, computation, bandwidth, and power supply. To this end, we propose a framework called NetDistiller to boost the achievable accuracy of TNNs by treating them as sub-networks of a weight-sharing teacher constructed by expanding the number of channels of the TNN. Specifically, the target TNN model is jointly trained with the weight-sharing teacher model via (1) gradient surgery to tackle the gradient conflicts between them and (2) uncertainty-aware distillation to mitigate the overfitting of the teacher model. Extensive experiments across diverse tasks validate NetDistiller's effectiveness in boosting TNNs' achievable accuracy over state-of-the-art methods. Our code is available at https://github.com/GATECH-EIC/NetDistiller

    Quartet Logic: A Four-Step Reasoning (QLFR) framework for advancing Short Text Classification

    Full text link
    Short Text Classification (STC) is crucial for processing and comprehending the brief but substantial content prevalent on contemporary digital platforms. The STC encounters difficulties in grasping semantic and syntactic intricacies, an issue that is apparent in traditional pre-trained language models. Although Graph Convolutional Networks enhance performance by integrating external knowledge bases, these methods are limited by the quality and extent of the knowledge applied. Recently, the emergence of Large Language Models (LLMs) and Chain-of-Thought (CoT) has significantly improved the performance of complex reasoning tasks. However, some studies have highlighted the limitations of their application in fundamental NLP tasks. Consequently, this study sought to employ CoT to investigate the capabilities of LLMs in STC tasks. This study introduces Quartet Logic: A Four-Step Reasoning (QLFR) framework. This framework primarily incorporates Syntactic and Semantic Enrichment CoT, effectively decomposing the STC task into four distinct steps: (i) essential concept identification, (ii) common-sense knowledge retrieval, (iii) text rewriting, and (iv) classification. This elicits the inherent knowledge and abilities of LLMs to address the challenges in STC. Surprisingly, we found that QLFR can also improve the performance of smaller models. Therefore, we developed a CoT-Driven Multi-task learning (QLFR-CML) method to facilitate the knowledge transfer from LLMs to smaller models. Extensive experimentation across six short-text benchmarks validated the efficacy of the proposed methods. Notably, QLFR achieved state-of-the-art performance on all datasets, with significant improvements, particularly on the Ohsumed and TagMyNews datasets

    Castling-ViT: Compressing Self-Attention via Switching Towards Linear-Angular Attention During Vision Transformer Inference

    Full text link
    Vision Transformers (ViTs) have shown impressive performance but still require a high computation cost as compared to convolutional neural networks (CNNs), one reason is that ViTs' attention measures global similarities and thus has a quadratic complexity with the number of input tokens. Existing efficient ViTs adopt local attention (e.g., Swin) or linear attention (e.g., Performer), which sacrifice ViTs' capabilities of capturing either global or local context. In this work, we ask an important research question: Can ViTs learn both global and local context while being more efficient during inference? To this end, we propose a framework called Castling-ViT, which trains ViTs using both linear-angular attention and masked softmax-based quadratic attention, but then switches to having only linear angular attention during ViT inference. Our Castling-ViT leverages angular kernels to measure the similarities between queries and keys via spectral angles. And we further simplify it with two techniques: (1) a novel linear-angular attention mechanism: we decompose the angular kernels into linear terms and high-order residuals, and only keep the linear terms; and (2) we adopt two parameterized modules to approximate high-order residuals: a depthwise convolution and an auxiliary masked softmax attention to help learn both global and local information, where the masks for softmax attention are regularized to gradually become zeros and thus incur no overhead during ViT inference. Extensive experiments and ablation studies on three tasks consistently validate the effectiveness of the proposed Castling-ViT, e.g., achieving up to a 1.8% higher accuracy or 40% MACs reduction on ImageNet classification and 1.2 higher mAP on COCO detection under comparable FLOPs, as compared to ViTs with vanilla softmax-based attentions.Comment: CVPR 202

    i-FlatCam: A 253 FPS, 91.49 μ\muJ/Frame Ultra-Compact Intelligent Lensless Camera for Real-Time and Efficient Eye Tracking in VR/AR

    Full text link
    We present a first-of-its-kind ultra-compact intelligent camera system, dubbed i-FlatCam, including a lensless camera with a computational (Comp.) chip. It highlights (1) a predict-then-focus eye tracking pipeline for boosted efficiency without compromising the accuracy, (2) a unified compression scheme for single-chip processing and improved frame rate per second (FPS), and (3) dedicated intra-channel reuse design for depth-wise convolutional layers (DW-CONV) to increase utilization. i-FlatCam demonstrates the first eye tracking pipeline with a lensless camera and achieves 3.16 degrees of accuracy, 253 FPS, 91.49 μ\muJ/Frame, and 6.7mm x 8.9mm x 1.2mm camera form factor, paving the way for next-generation Augmented Reality (AR) and Virtual Reality (VR) devices.Comment: Accepted by VLSI 202
    corecore