Transfer learning leverages feature representations of deep neural networks
(DNNs) pretrained on source tasks with rich data to empower effective
finetuning on downstream tasks. However, the pretrained models are often
prohibitively large for delivering generalizable representations, which limits
their deployment on edge devices with constrained resources. To close this gap,
we propose a new transfer learning pipeline, which leverages our finding that
robust tickets can transfer better, i.e., subnetworks drawn with properly
induced adversarial robustness can win better transferability over vanilla
lottery ticket subnetworks. Extensive experiments and ablation studies validate
that our proposed transfer learning pipeline can achieve enhanced
accuracy-sparsity trade-offs across both diverse downstream tasks and sparsity
patterns, further enriching the lottery ticket hypothesis.Comment: Accepted by DAC 202