1,717 research outputs found

    New class of 3D topological insulator in double perovskite

    Full text link
    We predict a new class of three-dimensional topological insulators (TIs) in which the spin-orbit coupling (SOC) can more effectively generate a large band gap at Γ\Gamma point. The band gap of conventional TI such as Bi2_2Se3_3 is mainly limited by two factors, the strength of SOC and, from electronic structure perspective, the band gap when SOC is absent. While the former is an atomic property, we find that the latter can be minimized in a generic rock-salt lattice model in which a stable crossing of bands {\it at} the Fermi level along with band character inversion occurs for a range of parameters in the absence of SOC. Thus, large-gap TI's or TI's comprised of lighter elements can be expected. In fact, we find by performing first-principle calculations that the model applies to a class of double perovskites A2_2BiXO6_6 (A = Ca, Sr, Ba; X = Br, I) and the band gap is predicted up to 0.55 eV. Besides, more detailed calculations considering realistic surface structure indicate that the Dirac cones are robust against the presence of dangling bond at the boundary with a specific termination.Comment: submitted; title changed and new references added; see DOI for published versio

    A Coupled Model for Solution Flow and Bioleaching Reaction Based on the Evolution of Heap Pore Structure

    Get PDF
    Based on the basic seepage law, equations have been derived to descript the solution flow within the copper ore heap which is treated as anisotropy porous media. The relationship between heap permeability and pore ratio has been revealed. Given the consideration of cover pressure and particle dissolution, pore evolution model has been set up. The pore evolution mechanism, due to the process of dissolution, precipitation, blockage, collapse, and caking, has been investigated. The comprehensive model for pore evolution and solution flow under the effect of solute transport and leaching reaction has been established. A trapezoidal heap was calculated, and the estimated results show that permeability decreases with the decreasing of pore ratio. Therefore, the permeability of the heap with small particles is relatively low because of its low pore ratio. Furthermore, permeability and height are found to be the two main factors influencing the solution flow

    A Re-examination of Incumbents’ Response to the Threat of Entry: Evidence from the Airline Industry

    Get PDF
    Much of the literature on the airline industry identifies a potential entrant to a market based on whether the relevant carrier has presence in at least one of the endpoint airports of the market without actually operating between the endpoints. Furthermore, a potential entrant is often defined as a credible “entry threat” to market incumbents once the potential entrant establishes presence at the second endpoint airport of the market. This paper provides evidence that even when a potential entrant has presence at both endpoint airports of a market, incumbents may not respond to this as an effective “entry threat”. Specifically, we find that: (1) incumbents lower price by more when the potential entrant has a hub at one or both market endpoints; and (2) incumbents increase rather than lower their price if they have an alliance partnership with the “potential entrant”

    On the Extent to which the Presence of Intermediate-stop(s) Air Travel Products Influences the Pricing of Nonstop Air Travel Products

    Get PDF
    Analysts of air travel markets, which include antitrust authorities, are interested in understanding the extent to which the presence of intermediate stop(s) products influences the pricing of nonstop products. This paper uses a structural econometric model to investigate the potential pricing interdependence between these two product types in domestic air travel markets. Counterfactual experiments using the estimated model suggest that in many (but far from a majority) markets the current prices of nonstop products are at least 5% lower than they would otherwise be owing to the presence of intermediate-stop(s) products

    Magnetic Quantum Wire as a Spin Filter: An Exact Study

    Full text link
    We propose that a magnetic quantum wire composed of magnetic and non-magnetic atomic sites can be used as a spin filter for a wide range of applied bias voltage. We adopt a simple tight-binding Hamiltonian to describe the model where the quantum wire is attached to two semi-infinite one-dimensional non-magnetic electrodes. Based on single particle Green's function formalism all the calculations are performed numerically which describe two-terminal conductance and current through the wire. Our exact results may be helpful in fabricating mesoscopic or nano-scale spin filter.Comment: 6 pages, 5 figure

    A Comprehensive Survey on Orbital Edge Computing: Systems, Applications, and Algorithms

    Full text link
    The number of satellites, especially those operating in low-earth orbit (LEO), is exploding in recent years. Additionally, the use of COTS hardware into those satellites enables a new paradigm of computing: orbital edge computing (OEC). OEC entails more technically advanced steps compared to single-satellite computing. This feature allows for vast design spaces with multiple parameters, rendering several novel approaches feasible. The mobility of LEO satellites in the network and limited resources of communication, computation, and storage make it challenging to design an appropriate scheduling algorithm for specific tasks in comparison to traditional ground-based edge computing. This article comprehensively surveys the significant areas of focus in orbital edge computing, which include protocol optimization, mobility management, and resource allocation. This article provides the first comprehensive survey of OEC. Previous survey papers have only concentrated on ground-based edge computing or the integration of space and ground technologies. This article presents a review of recent research from 2000 to 2023 on orbital edge computing that covers network design, computation offloading, resource allocation, performance analysis, and optimization. Moreover, having discussed several related works, both technological challenges and future directions are highlighted in the field.Comment: 18 pages, 9 figures and 5 table

    Weight-dependent Gates for Differentiable Neural Network Pruning

    Full text link
    In this paper, we propose a simple and effective network pruning framework, which introduces novel weight-dependent gates to prune filter adaptively. We argue that the pruning decision should depend on the convolutional weights, in other words, it should be a learnable function of filter weights. We thus construct the weight-dependent gates (W-Gates) to learn the information from filter weights and obtain binary filter gates to prune or keep the filters automatically. To prune the network under hardware constraint, we train a Latency Predict Net (LPNet) to estimate the hardware latency of candidate pruned networks. Based on the proposed LPNet, we can optimize W-Gates and the pruning ratio of each layer under latency constraint. The whole framework is differentiable and can be optimized by gradient-based method to achieve a compact network with better trade-off between accuracy and efficiency. We have demonstrated the effectiveness of our method on Resnet34, Resnet50 and MobileNet V2, achieving up to 1.33/1.28/1.1 higher Top-1 accuracy with lower hardware latency on ImageNet. Compared with state-of-the-art pruning methods, our method achieves superior performance.Comment: ECCV worksho

    Ter94 ATPase Complex Targets K11-Linked Ubiquitinated Ci to Proteasomes for Partial Degradation

    Get PDF
    SummaryThe Cubitus interruptus (Ci)/Gli family of transcription factors can be degraded either completely or partially from a full-length form (Ci155/GliFL) to a truncated repressor (Ci75/GliR) by proteasomes to mediate Hedgehog (Hh) signaling. The mechanism by which proteasomes distinguish ubiquitinated Ci/Gli to carry out complete versus partial degradation is not known. Here, we show that Ter94 ATPase and its mammalian counterpart, p97, are involved in processing Ci and Gli3 into Ci75 and Gli3R, respectively. Ter94 regulates the partial degradation of ubiquitinated Ci by Cul1-Slimb-based E3 ligase through its adaptors Ufd1-like and dNpl4. We demonstrate that Cul1-Slimb-based E3 ligase, but not Cul3-Rdx-based E3 ligase, modifies Ci by efficient addition of K11-linked ubiquitin chains. Ter94Ufd1-like/dNpl4 complex interacts directly with Cul1-Slimb, and, intriguingly, it prefers K11-linked ubiquitinated Ci. Thus, Ter94 ATPase and K11-linked ubiquitination in Ci contribute to the selectivity by proteasomes for partial degradation
    • …
    corecore