796 research outputs found

    Turner syndrome with ring x chromosome: do they have a distinct phenotype?

    Get PDF
    In contrast to classic Turner syndrome, Turner patients with ring X chromosome are associated with distinct dysmorphism and are likely to be mentally impaired. Four Turner patients with ring X chromosome were examined for phenotypic features of Turner syndrome and additional dysmorphism. Both patients 1 and 2 are twins with normal intelligence whereas patients 3 and 4 have mental impairment. With the exception of patient 4, the other three patients only have few Turner characteristics. None of the patients have the distinctive dysmorphism previously reported in Turner syndrome with ring X chromosome. Both twins developed spontaneous puberty. Patients 3 and 4 however had no spontaneous puberty. We postulate that this variation may be related to the ring size, the proportion of 45,X and ring X chromosome in cell lines of various body tissues as well as the ability of these rings to be inactivated as a result of lyonisation

    Clinical features of girls with turner syndrome in a single centre in Malaysia

    Get PDF
    Objectives. Diagnosis of Turner syndrome in Malaysia is often late. This may be due to a lack of awareness of the wide clinical variability in this condition. In our study, we aim to examine the clinical features of all our Turner patients during the study period and at presentation. Methodology. This was a cross-sectional study. Thirty-four (34) Turner patients were examined for Turner-specific clinical features. The karyotype, clinical features at presentation, age at diagnosis and physiologic features were retrieved from their medical records. Results. Patients with 45,X presented at a median age of 1 month old with predominantly lymphoedema and webbed neck. Patients with chromosome mosaicism or structural X abnormalities presented at a median age of 11 years old with a broader clinical spectrum, short stature being the most common presenting clinical feature. Cubitus valgus deformity, nail dysplasia and short 4th/5th metacarpals or metatarsals were common clinical features occurring in 85.3%-94.1% of all Turner patients. Almost all patients aged ≥2 years were short irrespective of karyotype. Conclusion. Although short stature is a universal finding in Turner patients, it is usually unrecognised till late. Unlike the 45,X karyotype, non-classic Turner syndrome has clinical features which may be subtle and difficult to discern. Our findings underscore the importance of proper serial anthropometric measurements in children. Awareness for the wide spectrum of presenting features and careful examination for Turner specific clinical features is crucial in all short girls to prevent a delay in diagnosis

    Staphylococcal Cassette Chromosome mec in MRSA, Taiwan

    Get PDF
    To determine the predominant staphylococcal cassette chromosome (SCC) mec element in methicillin-resistant Staphylococcus aureus, we typed 190 isolates from a hospital in Taiwan. We found a shift from type IV to type III SCCmec element during 1992–2003, perhaps caused by selective pressure from indiscriminate use of antimicrobial drugs

    Telomerase prevents accelerated senescence in glucose-6-phosphate dehydrogenase (G6PD)-deficient human fibroblasts

    Get PDF
    Fibroblasts derived from glucose-6-phosphate dehydrogenase (G6PD)-deficient patients display retarded growth and accelerated cellular senescence that is attributable to increased accumulation of oxidative DNA damage and increased sensitivity to oxidant-induced senescence, but not to accelerated telomere attrition. Here, we show that ectopic expression of hTERT stimulates telomerase activity and prevents accelerated senescence in G6PD-deficient cells. Stable clones derived from hTERT-expressing normal and G6PD-deficient fibroblasts have normal karyotypes, and display no sign of senescence beyond 145 and 105 passages, respectively. Activation of telomerase, however, does not prevent telomere attrition in earlier-passage cells, but does stabilize telomere lengths at later passages. In addition, we provide evidence that ectopic expression of hTERT attenuates the increased sensitivity of G6PD-deficient fibroblasts to oxidant-induced senescence. These results suggest that ectopic expression of hTERT, in addition to acting in telomere length maintenance by activating telomerase, also functions in regulating senescence induction

    Early Components of the Complement Classical Activation Pathway in Human Systemic Autoimmune Diseases

    Get PDF
    The complement system consists of effector proteins, regulators, and receptors that participate in host defense against pathogens. Activation of the complement system, via the classical pathway (CP), has long been recognized in immune complex-mediated tissue injury, most notably systemic lupus erythematosus (SLE). Paradoxically, a complete deficiency of an early component of the CP, as evidenced by homozygous genetic deficiencies reported in human, are strongly associated with the risk of developing SLE or a lupus-like disease. Similarly, isotype deficiency attributable to a gene copy number variation, and/or the presence of autoantibodies directed against a CP component or a regulatory protein that result in an acquired deficiency are relatively common in SLE patients. Applying accurate assay methodologies with rigorous data validations, low gene copy numbers of total C4, heterozygous and homozygous deficiencies of C4A have been shown as medium to large effect size risk factors, while high copy numbers of total C4 or C4A as prevalent protective factors, of European and East-Asian SLE. Here, we summarize the current knowledge related to genetic deficiency and insufficiency, and acquired protein alterations for C1q, C1r, C1s, C4A/C4B, and C2 in disease pathogenesis and prognosis of SLE, and, briefly, for other systemic autoimmune diseases. As the complement system is increasingly found to be associated with autoimmune diseases, it has become an attractive therapeutic target. We highlight the recent developments and offer a balanced perspective concerning future investigations and therapeutic applications with a focus on early components of the CP in human systemic autoimmune diseases

    Biochemical Characterization of the Human Cyclin-dependent Protein Kinase Activating Kinase: IDENTIFICATION OF p35 AS A NOVEL REGULATORY SUBUNIT

    Get PDF
    The activation of cyclin-dependent protein kinases (Cdks) is dependent upon site-specific phosphorylation and dephosphorylation reactions, as well as positive and negative regulatory subunits. The human Cdk-activating protein kinase (Cak1) is itself a Cdc2-related cyclin-dependent protein kinase that associates with cyclin H. The present study utilized specific anti-Cak1 antibodies and immunoaffinity chromatography to identify additional Cak1-associated proteins and potential target substrates. Immunoprecipitation of metabolically labeled human osteosarcoma cells revealed a number of Cak1-associated proteins, including p95, p37 (cyclin H), and a 35-kDa protein that was further characterized herein. Microsequence analysis obtained after limited proteolysis revealed peptide fragments that are similar, but not identical to, human and yeast cyclins, thus identifying p35 as a cyclin-like regulatory subunit. The greatest sequence similarity of human p35 is with Mcs2, a yeast cyclin that is essential for cell cycle progression. Immunoaffinity chromatography performed under nondenaturing conditions afforded the isolation of enzymatically active Cak1 from cell lysates, enabling studies of kinase autophosphorylation and comparative substrate utilization. Immunoaffinity-purified Cak1 phosphorylated monomeric Cdc2 and Cdk2, but not Cdk4; the phosphorylation of both Cdc2 and Cdk2 were increased in the presence of recombinant cyclin A. These studies indicate that the Cak1 catalytic subunit, like Cdc2 and Cdk2, associates with multiple regulatory partners and suggests that subunit composition may be an important determinant of this multifunctional enzyme

    DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis.

    Get PDF
    Breast cancer genomes have revealed a novel form of mutation showers (kataegis) in which multiple same-strand substitutions at C:G pairs spaced one to several hundred nucleotides apart are clustered over kilobase-sized regions, often associated with sites of DNA rearrangement. We show kataegis can result from AID/APOBEC-catalysed cytidine deamination in the vicinity of DNA breaks, likely through action on single-stranded DNA exposed during resection. Cancer-like kataegis can be recapitulated by expression of AID/APOBEC family deaminases in yeast where it largely depends on uracil excision, which generates an abasic site for strand breakage. Localized kataegis can also be nucleated by an I-SceI-induced break. Genome-wide patterns of APOBEC3-catalyzed deamination in yeast reveal APOBEC3B and 3A as the deaminases whose mutational signatures are most similar to those of breast cancer kataegic mutations. Together with expression and functional assays, the results implicate APOBEC3B/A in breast cancer hypermutation and give insight into the mechanism of kataegis. DOI:http://dx.doi.org/10.7554/eLife.00534.001

    The complement system and human autoimmune diseases

    Get PDF
    Genetic deficiencies of early components of the classical complement activation pathway (especially C1q, r, s, and C4) are the strongest monogenic causal factors for the prototypic autoimmune disease systemic lupus erythematosus (SLE), but their prevalence is extremely rare. In contrast, isotype genetic deficiency of C4A and acquired deficiency of C1q by autoantibodies are frequent among patients with SLE. Here we review the genetic basis of complement deficiencies in autoimmune disease, discuss the complex genetic diversity seen in complement C4 and its association with autoimmune disease, provide guidance as to when clinicians should suspect and test for complement deficiencies, and outline the current understanding of the mechanisms relating complement deficiencies to autoimmunity. We focus primarily on SLE, as the role of complement in SLE is well-established, but will also discuss other informative diseases such as inflammatory arthritis and myositis

    Mindfulness-based cognitive therapy v. group psychoeducation for people with generalised anxiety disorder: randomised controlled trial

    Get PDF
    Background: Research suggests that an 8-week mindfulness-based cognitive therapy (MBCT) course may be effective for generalised anxiety disorder (GAD). Aims: To compare changes in anxiety levels among participants with GAD randomly assigned to MBCT, cognitive–behavioural therapy-based psychoeducation and usual care. Method: In total, 182 participants with GAD were recruited (trial registration number: CUHK_CCT00267) and assigned to the three groups and followed for 5 months after baseline assessment with the two intervention groups followed for an additional 6 months. Primary outcomes were anxiety and worry levels. Results: Linear mixed models demonstrated significant group × time interaction (F(4,148) = 5.10, P = 0.001) effects for decreased anxiety for both the intervention groups relative to usual care. Significant group × time interaction effects were observed for worry and depressive symptoms and mental health-related quality of life for the psychoeducation group only. Conclusions: These results suggest that both of the interventions appear to be superior to usual care for the reduction of anxiety symptoms

    Interfacial partitioning behaviour of bovine serum albumin in polymer-salt aqueous two-phase system

    Get PDF
    A relationship is proposed for the interfacial partitioning of protein in poly(ethylene glycol) (PEG)-phosphate aqueous two-phase system (ATPS). The relationship relates the natural logarithm of interfacial partition coefficient, ln G to the PEG concentration difference between the top and bottom phases, Δ[PEG], with the equation ln G = AΔ[PEG] + B. Results showed that this relationship provides good fits to the partition of bovine serum albumin (BSA) in ATPS which is comprised of phosphate and PEG of four different molecular weight 1450 g/mol, 2000 g/mol, 3350 g/mol and 4000 g/mol, with the tie-line length (TLL) in the range of 44–60% (w/w) at pH 7.0. The decrease of A values with the increase of PEG molecular weight indicates that the correlation between ln G and Δ[PEG] decreases with the increase in PEG molecular weight and the presence of protein–polymer hydrophobic interaction. When temperature was increased, a non-linear relationship of ln G inversely proportional to temperature was observed. The amount of proteins adsorbed at the interface increased proportionally with the amount of BSA loaded whereas the partition coefficient, K remained relatively constant. The relationship proposed could be applied to elucidate interfacial partitioning behaviour of other biomolecules in polymer-salt ATPS
    corecore