570 research outputs found

    Catch Me If You Can: Blackbox Adversarial Attacks on Automatic Speech Recognition using Frequency Masking

    Get PDF
    Automatic speech recognition (ASR) models are prevalent, particularly in applications for voice navigation and voice control of domestic appliances. The computational core of ASRs are deep neural networks (DNNs) that have been shown to be susceptible to adversarial perturbations; easily misused by attackers to generate malicious outputs. To help test the security and robustnesss of ASRS, we propose techniques that generate blackbox (agnostic to the DNN), untargeted adversarial attacks that are portable across ASRs. This is in contrast to existing work that focuses on whitebox targeted attacks that are time consuming and lack portability. Our techniques generate adversarial attacks that have no human audible difference by manipulating the audio signal using a psychoacoustic model that maintains the audio perturbations below the thresholds of human perception. We evaluate portability and effectiveness of our techniques using three popular ASRs and two input audio datasets using the metrics - Word Error Rate (WER) of output transcription, Similarity to original audio, attack Success Rate on different ASRs and Detection score by a defense system. We found our adversarial attacks were portable across ASRs, not easily detected by a state-of-the-art defense system, and had significant difference in output transcriptions while sounding similar to original audio.Comment: 11 pages, 7 figures and 3 table

    CAN WE TRUST EXPLAINABLE AI METHODS ON ASR? AN EVALUATION ON PHONEME RECOGNITION

    Get PDF
    Explainable AI (XAI) techniques have been widely used to help explain and understand the output of deep learning models in fields such as image classification and Natural Language Processing. Interest in using XAI techniques to explain deep learning-based Automatic Speech Recognition (ASR) is emerging. But there is not enough evidence on whether these explanations can be trusted. To address this, we adapt a state-of-the-art XAI technique from the image classification domain, Local Interpretable Model-Agnostic Explanations (LIME), to a model trained for a TIMIT-based phoneme recognition task. This simple task provides a controlled setting for evaluation while also providing expert annotated ground truth to assess the quality of explanations. We find a variant of LIME based on time partitioned audio segments, that we propose in this paper, produces the most reliable explanations, containing the ground truth 96% of the time in its top three audio segments

    Can We Trust Explainable AI Methods on ASR? An Evaluation on Phoneme Recognition

    Full text link
    Explainable AI (XAI) techniques have been widely used to help explain and understand the output of deep learning models in fields such as image classification and Natural Language Processing. Interest in using XAI techniques to explain deep learning-based automatic speech recognition (ASR) is emerging. but there is not enough evidence on whether these explanations can be trusted. To address this, we adapt a state-of-the-art XAI technique from the image classification domain, Local Interpretable Model-Agnostic Explanations (LIME), to a model trained for a TIMIT-based phoneme recognition task. This simple task provides a controlled setting for evaluation while also providing expert annotated ground truth to assess the quality of explanations. We find a variant of LIME based on time partitioned audio segments, that we propose in this paper, produces the most reliable explanations, containing the ground truth 96% of the time in its top three audio segments

    A dynamic multi-objective evolutionary algorithm based on decision variable classification

    Get PDF
    The file attached to this record is the author's final peer reviewed version.In recent years, dynamic multi-objective optimization problems (DMOPs) have drawn increasing interest. Many dynamic multi-objective evolutionary algorithms (DMOEAs) have been put forward to solve DMOPs mainly by incorporating diversity introduction or prediction approaches with conventional multi-objective evolutionary algorithms. Maintaining good balance of population diversity and convergence is critical to the performance of DMOEAs. To address the above issue, a dynamic multi-objective evolutionary algorithm based on decision variable classification (DMOEA-DVC) is proposed in this study. DMOEA-DVC divides the decision variables into two and three different groups in static optimization and change response stages, respectively. In static optimization, two different crossover operators are used for the two decision variable groups to accelerate the convergence while maintaining good diversity. In change response, DMOEA-DVC reinitializes the three decision variable groups by maintenance, prediction, and diversity introduction strategies, respectively. DMOEA-DVC is compared with the other six state-of-the-art DMOEAs on 33 benchmark DMOPs. Experimental results demonstrate that the overall performance of the DMOEA-DVC is superior or comparable to that of the compared algorithms

    Roles of microRNA-124 in traumatic brain injury: a comprehensive review

    Get PDF
    Traumatic brain injury (TBI) is a prominent global cause of mortality due to the limited availability of effective prevention and treatment strategies for this disorder. An effective molecular biomarker may contribute to determining the prognosis and promoting the therapeutic efficiency of TBI. MicroRNA-124 (miR-124) is most abundantly expressed in the brain and exerts different biological effects in a variety of diseases by regulating pathological processes of apoptosis and proliferation. Recently, increasing evidence has demonstrated the association between miR-124 and TBI, but there is still a lack of relevant literature to summarize the current evidence on this topic. Based on this review, we found that miR-124 was involved as a regulatory factor in cell apoptosis and proliferation, and was also strongly related with the pathophysiological development of TBI. MiR-124 played an essential role in TBI by interacting with multiple biomolecules and signaling pathways, such as JNK, VAMP-3, Rela/ApoE, PDE4B/mTOR, MDK/TLR4/NF-κB, DAPK1/NR2B, JAK/STAT3, PI3K/AKT, Ras/MEK/Erk. The potential benefits of upregulating miR-124 in facilitating TBI recovery have been identified. The advancement of miRNA nanocarrier system technology presents an opportunity for miR-124 to emerge as a novel therapeutic target for TBI. However, the specific mechanisms underlying the role of miR-124 in TBI necessitate further investigation. Additionally, comprehensive large-scale studies are required to evaluate the clinical significance of miR-124 as a therapeutic target for TBI

    MOEA/D with Adaptive Weight Adjustment

    Get PDF
    Recently, MOEA/D (multi-objective evolutionary algorithm based on decomposition) has achieved great success in the field of evolutionary multi-objective optimization and has attracted a lot of attention. It decomposes a multi-objective optimization problem (MOP) into a set of scalar subproblems using uniformly distributed aggregation weight vectors and provides an excellent general algorithmic framework of evolutionary multi-objective optimization. Generally, the uniformity of weight vectors in MOEA/D can ensure the diversity of the Pareto optimal solutions, however, it cannot work as well when the target MOP has a complex Pareto front (PF; i.e., discontinuous PF or PF with sharp peak or low tail). To remedy this, we propose an improved MOEA/D with adaptive weight vector adjustment (MOEA/D-AWA). According to the analysis of the geometric relationship between the weight vectors and the optimal solutions under the Chebyshev decomposition scheme, a new weight vector initialization method and an adaptive weight vector adjustment strategy are introduced in MOEA/D-AWA. The weights are adjusted periodically so that the weights of subproblems can be redistributed adaptively to obtain better uniformity of solutions. Meanwhile, computing efforts devoted to subproblems with duplicate optimal solution can be saved. Moreover, an external elite population is introduced to help adding new subproblems into real sparse regions rather than pseudo sparse regions of the complex PF, that is, discontinuous regions of the PF. MOEA/D-AWA has been compared with four state of the art MOEAs, namely the original MOEA/D, Adaptive-MOEA/D, [Formula: see text]-MOEA/D, and NSGA-II on 10 widely used test problems, two newly constructed complex problems, and two many-objective problems. Experimental results indicate that MOEA/D-AWA outperforms the benchmark algorithms in terms of the IGD metric, particularly when the PF of the MOP is complex.</jats:p
    • …
    corecore