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Abstract—In recent years, dynamic multi-objective optimiza-
tion problems (DMOPs) have drawn increasing interest. Many 
dynamic multi-objective evolutionary algorithms (DMOEAs) 
have been put forward to solve DMOPs mainly by incorporating 
diversity introduction or prediction approaches with conventional 
multi-objective evolutionary algorithms. Maintaining good bal-
ance of population diversity and convergence is critical to the 
performance of DMOEAs. To address the above issue, a dynamic 
multi-objective evolutionary algorithm based on decision variable 
classification (DMOEA-DVC) is proposed in this study. 
DMOEA-DVC divides the decision variables into two and three 
different groups in static optimization and change response stages, 
respectively. In static optimization, two different crossover oper-
ators are used for the two decision variable groups to accelerate 
the convergence while maintaining good diversity. In change 
response, DMOEA-DVC reinitializes the three decision variable 
groups by maintenance, prediction, and diversity introduction 
strategies, respectively. DMOEA-DVC is compared with the other 
six state-of-the-art DMOEAs on 33 benchmark DMOPs. Experi-
mental results demonstrate that the overall performance of the 
DMOEA-DVC is superior or comparable to that of the compared 
algorithms. 
 

Index Terms—Dynamic multi-objective optimization problem, 
multi-objective optimization problem, dynamic multi-objective 
evolutionary algorithm, multi-objective evolutionary algorithm, 
decision variable classification. 

I. INTRODUCTION 
ynamic multi-objective optimization problems (DMOPs), 
with multiple conflicting and time-varying objectives, are 
ubiquitous in real-world applications [1], [2], [3], [4], [5], 

[6].  Multi-objective evolutionary algorithms (MOEAs) [7], [8], 
[9], [10], [11], [12], [13], [14] have achieved success on various 
static multi-objective optimization problems (MOPs) [15], [16], 

[17], [18]. However, they tend to fail in DMOPs due to the lack 
of quick change response mechanism in dynamic environment. 
To solve DMOPs, many dynamic MOEAs (DMOEAs) have 
been proposed in recent years. The majority of them can be 
categorized into diversity introduction approaches [1], [19], 
[20], [21], [22], [23], [24] and prediction approaches [25], [26], 
[27], [28], [29], [30], [31], [32], [33].  

Diversity introduction approaches introduce a certain pro-
portion of randomized or mutated individuals into the evolution 
population once a change occurs to increase the population 
diversity. The increase of diversity can facilitate the algorithms 
to better adapt to the new environment. However, since these 
algorithms mainly rely on the static evolution search to find the 
optimal solution set after diversity introduction, the conver-
gence might be slow down. Prediction approaches adopt pre-
diction models to predict the promising population in the 
changing environments. They can substantially improve the 
convergence of the population. However, most prediction 
models require a training cycle in which the performance of the 
prediction models is unsatisfactory. Moreover, the existing 
DMOEAs, including the diversity introduction and prediction 
approaches as well as other miscellaneous approaches [34], 
[35], [36], [37], [38], [39], do not take into account the different 
characteristics of the decision variables. They tend to explore 
all decision variables in the same way, which is less efficient in 
balancing the population diversity and convergence. 

To address the aforementioned issues, in this work, we 
propose a DMOEA based on decision variable classification 
(DMOEA-DVC). DMOEA-DVC is characterized by a com-
bination of diversity introduction, fast prediction models, and 
decision variable classification methods. The diversity intro-
duction and prediction methods complement with each other in 
DMOEA-DVC to overcome their inherent defects. Two deci-
sion variable classification methods are introduced to classify 
the decision variables into two and three different groups in 
static optimization and change response stages, respectively. 
Based on the classification, different evolution operators and 
change response strategies are accordingly applied on the 
decision variables to enhance the population diversity and 
convergence. DMOEA-DVC is compared with the other six 
state-of-the-art DMOEAs including DNSGA-II-B [1], PPS [25], 
MOEA/D-KF [26], SGEA [33], Tr-DMOEA [35], and 
DMOEA-CO [52] on 33 benchmark DMOPs, including five 
FDA benchmarks [4], three dMOP benchmarks [19], two 
DIMP benchmarks [41], nine JY benchmarks [42], and four-
teen newly developed DF benchmarks [43]. The experimental 
results show that DMOEA-DVC is more adaptable to the 

A Dynamic Multi-objective Evolutionary Algo-
rithm Based on Decision Variable Classification 

  
Zhengping Liang, Tiancheng Wu, Xiaoliang Ma, Zexuan Zhu and Shengxiang Yang 

D 

Manuscript received XX. XX. XXX; revised XX. XX. XXX; accepted XX. 
XX. XXX. This work was supported in part by the National Natural Science 
Foundation of China under Grants 61871272, 61976143 and 61673331, in part 
by the Natural Science Foundation of Guangdong Province, China, under 
Grants 2020A151501479, 2019A1515010869 and 2020A151501946, in part 
by the Shenzhen Scientific Research and Development Funding Program 
under Grants JCYJ20190808173617147 and GGFW2018020518310863, in 
part by the Scientific Research Foundation of Shenzhen University for newly 
introduced teachers, under Grant 2019048 and 85304/00000247, and in part 
by the Zhejiang Lab's International Talent Fund for Young Professionals. 
(Corresponding author: Zexuan Zhu.) 

Z. Liang, T. Wu, and X. Ma are with the College of Computer Science and 
Software Engineering, Shenzhen University, Shenzhen 518060, China 
(e-mail: liangzp@szu.edu.cn; wutianchengsz@163.com; maxiaoli-
ang@yeah.net;). 

Z. Zhu is with the College of Computer Science and Software Engineering, 
Shenzhen University, Shenzhen 518060, China, also with Shenzhen Peng-
cheng Laboratory, Shenzhen 518055, China, and also with the SZU Branch, 
Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shen-
zhen University, Shenzhen 518060, China (e-mail: zhuzx@szu.edu.cn). 

S. Yang is with the Centre for Computational Intelligence (CCI), School of 
Computer Science and Informatics, De Montfort University, Leicester LE1 
9BH, U.K. (email: syang@dmu.ac.uk). 
 

mailto:maxiaoliang@yeah.net
mailto:maxiaoliang@yeah.net


 
 
 

2 

changing environments than the other six algorithms. 
The contributions of this work are summarized as follows: 
1) Two new decision variable classification methods, ap-

plicable to the static optimization and change response stages, 
respectively, enable the algorithm to explore different variables 
more efficiently.  

2) In static optimization, a new offspring generation strategy 
by mixing specific crossover operators for two different kinds 
of decision variables is introduced to speed up the population 
convergence, while maintaining the population diversity of the 
algorithm. 

3) In change response, a hybrid response strategy of 
maintenance, prediction, and diversity introduction is advanced 
to handle three types of decision variables, such that better 
adaptability in different dynamic environments is achieved. 

The rest of this paper is organized as follows: Section II in-
troduces the basics of DMOP and the related work of the ex-
isting DMOEAs, Section III describes the details of the pro-
posed DMOEA-DVC, Sections IV and V present the experi-
mental design and results, respectively, and finally Section VI 
concludes this study and discusses the future work. 

II. BACKGROUND AND RELATED WORK 
This section provides some basics of DMOP to facilitate the 

understanding of the proposed method and reviews the related 
work on DMOEAs and decision variable classification. 

A. Basics of DMOP 
Without loss of generality, we can assume that each objec-

tive function of a DMOP is a minimization problem, then a 
DMOP can be mathematically defined as follows: 
 1Ω

min ( , ) ( ( , ),..., ( , ))T
mx

x t f x t f x t
∈

=F  (1) 
where x = (x1, x2,..., xn)T is an n-dimensional decision vector 
bounded in the decision space Ω, m is the number of objectives, 
t is the time parameter, and the mapping function fi(x, t) (i = 1, 
2, …, m) refers to the i-th objective function of x at time t. F(x, t) 
is the objective function vector that evaluates solution x at time 
t. The mathematical definition of time parameter t is given as 
follows: 
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where τ is the iteration counter, nt is the number of distinct steps 
in t, and τt is the number of iterations for which t remains the 
same. In Eq. (2), nt and τt determine the severity level and 
frequency value of t, respectively. 
 The goal of solving Eq. (1) is to find the dynamic Pare-
to-optimal set or dynamic Pareto-optimal front based on dy-
namic Pareto-dominance: 
 Definition 1 Dynamic Pareto-dominance: Given two can-
didate solutions x and y (x, y∈Ω) at time t, x is said to dominate 
y, written as x(t) ≺ y(t), if and only if 
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Definition 2 Dynamic Pareto-optimal set: A dynamic Pa-
reto-optimal set at time t, denoted as PS(t), includes all solu-
tions that are not dominated by any other solutions at time t, i.e., 
 ( ) { | Ω : ( ) ( )}PS t x y x t y t= ¬∃ ∈    (4) 

Definition 3 Dynamic Pareto-optimal front: A dynamic 
Pareto-optimal front at time t, denoted as PF(t), is the mapping 
of the solutions in PS(t) in the objective space, i.e., 
 ( ) { ( , ) | ( )}PF t x t x PS t= ∈F   (5) 

Definition 4 Multi-optimal variable: Given a decision var-
iable i, if there exist two solutions x and y in PS(t) and xi≠yi, 
where xi and yi are the i-th decision variable values of candidate 
solutions x and y, respectively, then the decision variable i is 
said to have multiple optimal values, i.e., it is a multi-optimal 
variable. 

Definition 5 Single-optimal variable: Given a decision 
variable i, if for any two solutions x and y in PS(t), their cor-
responding i-th decision variable values are the same, i.e., xi=yi, 
then the decision variable i is said to have single optimal value, 
i.e., it is a single-optimal variable. 

In other words, if a decision variable is single-optimal, all 
solutions in PS(t) have the same value on this decision variable. 
If a decision variable is multi-optimal, there have multiples 
values for this variable among the individuals in PS(t). 

In general, a DMOP can be divided into four types [4] ac-
cording to the dynamic characteristics of PF(t) and PS(t): 

Type I: PS(t) changes over time and PF(t) is fixed. 
Type II: Both PS(t) and PF(t) change over time. 
Type III: PS(t) is fixed and PF(t) changes over time. 
Type IV: Both PS(t) and PF(t) are fixed, but the problem 

changes over time.  

B. Dynamic Multi-Objective Evolutionary Algorithms 
In recent years, many DMOEAs have been put forward to 

deal with DMOPs. These algorithms are mainly categorized 
into two groups, i.e., diversity introduction and prediction 
based approaches. 

Diversity introduction approaches take into account the po-
tential diversity loss of the population in a dynamic environ-
ment, and introduce randomized or mutated individuals once an 
environmental change is detected. For example, Deb et al. [1] 
proposed two DMOEAs (DNSGA-II-A and DNSGA-II-B) 
based on NSGA-II [7]. Once a change is detected, 
DNSGA-II-A randomly re-initializes 20% of the individuals, 
while DNSGA-II-B randomly mutates 20% of the individuals. 
Goh and Tan [19] introduced a competitive-cooperative co-
evolutionary algorithm (dCOEA) where some new individuals 
are generated randomly to enhance the diversity of the popula-
tion when the environmental changes. Helbig and Engelbrecht 
[20] proposed a heterogeneous dynamic vector evaluated par-
ticle swarm optimisation (HDVEPSO) algorithm by combining 
heterogeneous particle swarm optimisation (HPSO) [21], [22] 
and dynamic vector evaluated particle swarm optimisation 
(DVEPSO) [23]. HDVEPSO randomly re-initializes 30% of 
the swarm particles after the objective function changes. Mar-
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tínez-Peñaloza and Mezura-Montes [24] combined generalized 
differential evolution along with an artificial immune system to 
solve DMOP (Immune-GDE3). As demonstrated in the exist-
ing studies, diversity introduction approaches can prevent the 
population from falling into local optima and they are easy to 
implement.  

To accelerate the adaptation of the population to the dynamic 
environments, prediction based approaches have been proposed 
to generate a promising population in a new environment. For 
example, Zhou et al. [25] presented a population prediction 
strategy (PPS) to divide the population into a center point and a 
manifold. The proposed method uses an autoregression (AR) 
model to locate the next center point, and uses the previous two 
consecutive manifolds to predict the next manifold. The pre-
dicted center point and manifold make up a new population 
more suitable to the new environment. Muruganantham et al. 
[26] applied Kalman filter [44] in the decision space to predict 
the new Pareto-optimal set. They also proposed a scoring 
scheme to decide the predicting proportion. Hatzakis and 
Wallace [27] suggested an AR model to predict the boundary 
point in the objective space in the new environment. Peng et al. 
[28] put forward exploration and exploitation operators to 
predict the new optimal solutions. Wei and Wang [29] pre-
sented hyper rectangle prediction to generate a solution set once 
a change occurs. Ruan et al. [30] applied gradual search to 
predict the ideal position of the individuals in the new envi-
ronment. Wu et al. [31] re-initialized individuals in the or-
thogonal direction to the predicted direction of the population 
in change response. Ma et al. [32] utilized a simple linear model 
to generate the population in the new environment. Jiang and 
Yang [33] introduced a steady-state and generational evolu-
tionary algorithm (SGEA), which guides the search of the 
solutions by a moving direction from the centroid of the 
non-dominated solution set to the centroid of the whole popu-
lation. The step-size of the search is defined as the Euclidean 
distance between the centroids of the non-dominated solution 
set at time steps (t-1) and t. In the aforementioned references, 
prediction based approaches have shown capabilities of en-
hancing the convergence speed.  

This work proposes an enhance change response strategy by 
combining diversity introduction with a fast prediction based 
approach to take the advantages of both.  

C. Decision Variable Classification Methods 
A diversity introduction or prediction approach can be re-

garded as a probabilistic model for searching the optimal values 
of the decision variables. Most existing DMOEAs assume all 
decision variables are under the same probability distribution. 
However, in real DMOPs, the probability distributions of the 
decision variables can be significantly varied. With decision 
variable classification, decision variables can be classified into 
different groups, and then specific probabilistic searching 
models can be applied to the corresponding variable groups to 
obtain better solutions. 

Many MOEAs based on decision variable classification have 

achieved success on static MOPs. For example, decision vari-
able classification is implemented by decision variable per-
turbation in [45], [46], [47], [48]. Decision variable perturba-
tion generates a large number of individuals for classification 
and consumes proportionally a large number of fitness evalua-
tions. This strategy works well for static MOPs where the 
categories of decision variables do not change, and it calls for 
only once classification. However, in DMOPs, the categories of 
decision variables may change over time and much more times 
of classification and fitness evaluations are required. Sun et al. 
[49] and Omidvar et al. [50] reduced the number of fitness 
evaluations by using statistical information collected over a 
certain period of time. Unfortunately, the environment could 
change quickly in DMOPs, which does not allow such methods 
to obtain accurate statistical information in the short time 
windows.  

There are few methods proposed for decision variable clas-
sification in DMOPs and the existing methods for static prob-
lems might not be applicable to dynamic problems. 
Woldesenbet and Yen [51] distinguished the decision variables 
by their average sensitivities to the change in the objective 
space, based on which individuals are relocated. The method 
works well for dynamic single-objective optimization problems, 
but it is inapplicable to DMOPs. Xu et al. [52] introduced a 
cooperative co-evolutionary algorithm for DMOPs where the 
decision variables are decomposed into two subcomponents, 
i.e., inseparable and separable variables with respect to the 
environment variable t. Two populations are applied to coop-
eratively optimize the two subcomponents, respectively. The 
proposed algorithm in [52] is superior on DMOPs where the 
decision variables are decomposable based on environment 
sensitivities, however, it might not be the fact in many DMOPs.  

In this work, we propose a more general decision variable 
classification method applicable to most DMOPs. The pro-
posed method achieves accurate classification with no extra 
objective function evaluations nor iterative accumulation to 
collect statistical information. Particularly, the decision varia-
ble classification method uses the statistical information be-
tween the decision variables and the objective functions that is 
available in the first iteration after each environment change, 
i.e., no need to consume extra fitness evaluations. It is worth 
highlighting that the classification proposed in this work is the 
first attempt to distinguish the decision variable distributions 
(i.e., single-optimal or multi-optimal value) in DMOPs. From 
the beginning of the search, different strategies are adopted to 
sample different decision variables. In this way, decision var-
iables can obey the distribution of PS(t) as much as possible in 
the iterative process, so as to better cover and approach PS(t). 

III. THE PROPOSED FRAMEWORK AND IMPLEMENTATION 
DMOEA-DVC uses a steady-state and generational MOEA 

as the static framework, i.e., DMOEA-DVC responds to the 
changes and generates individuals in a steady-state manner and 
performs environmental selection in a generational manner. 
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The overall framework of DMOEA-DVC is shown in Algo-
rithm 1 

At the beginning of the algorithm, a parent population P is 
initialized. An offspring population P’ and an archive A of 
non-dominated solutions are then selected from the parent 
population. In each evolution generation, before each individ-
ual is generated using evolution operators, the decision variable 
classification is applied on P and the result is recorded in a 
Boolean vector flag_multi, of which each element indicates 
whether a corresponding decision variable is a multi-optimal or 
single-optimal variable. DMOEA-DVC detects any potential 
changes during the evolution. If a change is detected, the 
change response strategy is applied. Otherwise, it uses different 
crossover operators to generate the values of different types of 
variables in each individual. Once an individual is generated, 
both P and A are updated. At the end of each generation, a new 
offspring population and a new archive is selected from the 
combination of the current parent population and offspring 
population.  

The originality of this work lies in the decision variable 
classification (lines 6 and 9 of Algorithm 1), offspring genera-
tion (line 11 of Algorithm 1), and change response strategy 
(line 9 of Algorithm 1). The key components of DMOEA-DVC 
are described in details in the following subsections.  

A. Decision Variable Classification 
1) Decision Variable Classification in Static Optimization: 

Decision variable classification in static optimization stage 
(line 6 of Algorithm 1) is applied to increase the possibility of 
generating high quality offspring individuals. A good DMOEA 
should be able to find a population with uniform distribution on 
the PF and converge to the PF as quickly as possible. To 
achieve this goal, it is favorable to explore the neighborhood of 
the non-dominated individuals in the population. However, if 
all the decision variables of the offspring are generated near 
that of the non-dominated individuals, the population tends to 
be trapped in the local optima. To solve this issue, the values of 
multi-optimal variables in the offspring individuals should be 
generated far away from that of the parent individuals. The 
reason is that the optimal values of multi-optimal variables may 
spread across a specific area. At the early search stage, the 

non-dominated individuals may not be able to cover this area, 
therefore the population cannot possess good diversity if the 
offspring are generated near the non-dominated individuals. In 
this regard, the offspring should be generated far away from the 
non-dominated individuals on multi-optimal variables to 
maintain good diversity. Conversely, for single-optimal varia-
bles, the generated values in the offspring individuals should be 
as close as possible to the corresponding values in the parent 
individuals to accelerate the convergence. 

The key issue is how to classify multi-optimal and sin-
gle-optimal variables. Since the real optimal solutions of the 
target problems are usually unknown in advance, it is infeasible 
to classify the variables based on the definitions provided in 
Section II.A. In this subsection, we propose an approximate 
method to distinguish multi-optimal and single-optimal varia-
bles. In DMOP, the objective functions could conflict with each 
other on some decision variables [53], [54]. If two objective 
functions conflict on a decision variable, the decision variable 
is deemed to have multiple optimal values.  

Given two non-dominant solutions x and y, without loss of 
generality, suppose xi > yi on the i-th decision variable. If there 
exist two different objective functions fj(⸳) and fk(⸳) such that 
fj(x,t) > fj(y,t) and fk(x,t) < fk(y,t), fj(⸳) is positively correlated 
with the i-th decision variable whereas fk(⸳) is negatively cor-
related with decision variable i. Since the monotonicities of fj(⸳) 
and fk(⸳) conflict with each other with respect to the i-th decision 
variable, the Pareto optimal solutions are unable to reach a 
consensus on variable i. As such, the i-th decision variable is 
classified as multi-optimal variable. In other cases, it is not 
straightforward to determine whether the i-th decision variable 
has multiple or single optimal values. For the sake of saving 
computational budget, the other decision variables are classi-
fied as single-optimal variables, which usually holds in real 
DMOPs. In this line, we use Spearman rank correlation coef-
ficient (SRCC) to measure the correlation between one variable 
and an objective function. Particularly, the SRCC between a 
decision variable i (i = 1,2,...,n) and an objective function fj(x, t) 
(j = 1,2,...,m) is defined as follows: 

Algorithm 2: ClassificationSO(P) //SO: Static Optimization 
1 Input: P (parent population) 
2 
 

Output: flag_multi (each item is a Boolean value indicating whether 
the corresponding variable is multi-optimal variable) 

3 for i = 1 to n // n refers to the number of decision variables 
4  for j = 1 to m // m refers to the number of objective functions 
5   Compute rj 

i (t) according to Eq. (6); 
6  end for 
7 end for 
8 for i = 1 to n 
9  if max(ri

1(t), ri
2(t),…,ri

m(t))>0.5α & min(ri
1(t), ri

2(t),…, ri
m(t))<-0.5α 

10   flag_multi[i] = true; 
11  else 
12   flag_multi[i] = false; 
13  end if 
14 end for 

 

Algorithm 1: Framework of DMOEA-DVC 
1 Input: N (population size) 
2 Output: P (parent population) 
3 Initial parent population P = {x1, x2, ..., xN}; 
4 (A, P') = EnvironmentSelection(P); 
5 while stopping criterion not met 
6  flag_multi = ClassificationSO (P); 
7  for i = 1 to N 
8   if change detected and not responded 
9    (P, A, P', flag_multi) = ChangeResponse(P); 
10   end if 
11   x = GenerateOffspring(flag_multi, P, A); 
12   (P, A) = UpdatePopulation(x);  
13  end for 
14  (A, P) = EnvironmentSelection(P∪P'); 
15 end while 
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where N refers to the size of population. dij
k represents the 

difference between the rank of the i-th decision variable and the 
rank of the j-th objective value in the k-th individual. The rank 
of a variable is the rank of its ascending order in P. The SRCC 
value ri

j(t) ranges from -1 to 1. A positive value indicates that 
the objective function tends to increase as the decision variable 
increases. In contrast, a negative value suggests that the objec-
tive function is likely to decrease as the decision variable 
increases. If there is an obvious correlation confliction (positive 
correlation vs. negative correlation) between two objective 
functions on the i-th variable, i.e., max(ri

1(t), ri
2(t),…, ri

m(t)) > 
0.5α and min(ri

1(t), ri
2(t),…, ri

m(t)) < -0.5α (α is a predefined 
threshold), then the i-th decision variable is classified as a 
multi-optimal variable. Otherwise, the i-th decision variable is 
considered as a single-optimal variable. 

The implementation of the decision variable classification 
strategy in static optimization is presented in Algorithm 2. 
Firstly, the SRCC value between each decision variable i and 
each objective j, i.e., rj 

i , is calculated (lines 3 to 7). Secondly, 
the decision variable is classified as multi-optimal variable 
(line 10) or single-optimal variable (line 12) according to the 
SRCC values.  

2) Decision Variable Classification in Change Response: In 
most existing DMOPs, the decision variables can be catego-
rized into similar, predictable, and unpredictable variables, 
considering the environment changes. A similar variable is a 
variable that hardly varies in the last two consecutive envi-
ronment changes. A predictable variable denotes a variable on 
which prediction achieves significant performance improve-

ment in the previous two environment changes. Conversely, an 
unpredictable variable has no gain in prediction. Intuitively, the 
similar decision variables need no re-initialization in the 
change response; the predictable decision variables should be 
re-initialized based on prediction, and the unpredictable deci-
sion variables can be re-initialized via diversity introduction. 

The nonparametric t-test [55], [56] is used to evaluate the 
correlation of the change of a decision variable and the envi-
ronment changes. Particularly, the values of a decision variable 
i in the current population and the previous environment are 
tested as follows: 

 2 2

( ) ( 1)
ttest

(Var( ( ))) (Var( ( 1)))
i i

i

i i

x t x t

x t x t
N

− −
=

+ −
  

(7) 

where x
__

i(t) represents the average value of the variable i in 
population P at time step t. If ttesti ≤ β, where β is a predefined 
threshold, the i-th variable is considered subject to insignificant 
change, i.e., it is a similar variable and no re-initialization is 
required. If ttesti > β, then the i-th decision variable is deemed 
to have significant change, i.e., variable i is predictable or 
unpredictable and re-initialization is needed. An extra proce-
dure is carried out to determine whether variable i is predictable 
or unpredictable: 

Firstly, a centroid individual of the current population is 
generated as follows: 

 
1

| | x P
x_center x

P ∈

= ∑   (8) 

Thereafter, n trial individuals x_trial[i] (i=1, 2,…, n) are gen-
erated by placing the i-th decision variable of x_center with a 
predicted value while leaving the other decision variables 
unchanged. The prediction can be done with any reasonable 
model (described in next subsection). If x_trial[i] dominates 
x_center, the prediction of the i-th decision variable is accepted, 
and the i-th decision variable is classified as a predictable 
variable and re-initialization based on prediction is applied. 
Otherwise, the i-th decision variable is unpredictable and 
re-initialization based on diversity introduction is used. Note 
that the centroid individual and the trial individuals are added to 
the current population P, so that the decision variable classifi-
cation in change response does not cause extra evaluation. 
 Theoretically, a prediction model should also be able to 
predict the situation where decision variables do not change too 
much in different environments. However, in some DMOPs 
(like FDA2, dMOP1, JY5, and JY8 used in Section IV), the 
PS(t) is unchanged, and a tiny change in a decision variable 
value can lead to significant negative impact on the algorithms 
performance. Prediction models are not applicable to such 
problems. 
 The procedure of decision variable classification in change 
response is outlined in Algorithm 3. Firstly, the ttest values and 
x_center are calculated according to Eqs. (7) and (8), respec-
tively. Secondly, a prediction model is used to predict a new 
individual x_p (the exact prediction model is described in 

Algorithm 3: ClassificationCR(P) //CR: Change Response 
1 Input: P (parent population) 
2 
 
 
 

Output: ttest (result of t-test), flag_predict (each item is a Bool-
ean value indicating whether the corresponding variable is 
re-initialized by prediction or not),  x_center (center individual), 
x_trial (a set of trial individuals) 

3 Compute ttest values according to Eq. (7); 
4 Generate a center individual x_center and evaluate x_center; 
5 Generate x_p by x_center using a prediction model; 
6 
7 
8 
9 
10 
11 
12 

for i = 1 to n 
 for j = 1 to n 
  if i == j 
   x_trial[j]i = x_pi; 
  else 
   x_trial[j]i = x_centeri; 
  end if 

13 
14 

 end for 
end for 

15 
16 

for i = 1 to n 
 Evaluate x_trial[i]; 

17  if x_trial[i] ≺ x_center 
18   flag_predict[i] = true; 
19  else 
20   flag_predict[i] = false; 
21  end if 
22 end for 
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Section IV.C). Thirdly, trial individuals are generated (lines 6 
to 14) and evaluated. If a trial individual dominates the centroid 
individual, the prediction of the corresponding decision varia-
ble of the trial individual is correct, otherwise the prediction is 
unacceptable. 

B. Environmental Selection 
DMOEA-DVC uses the same environmental selection 

strategy as SGEA [33]. The environmental selection process 
starts with fitness assignment. Each individual xi of the current 
population P is assigned a fitness value F(i), which is defined as 
the number of individuals dominating xi, i.e.,  
 ( ) { ( ) | ( ) ( )}j j iF i x t P x t x t= ∈    (9) 
where |·| denotes the cardinality of a set. If F(i)=0, xi is 
non-dominated by any other individuals, all non-dominated 
individuals are then copied to the archive A. If |A| is smaller 
than the population size N, the best N individuals are preserved 
in the offspring population P' based on their fitness values. If |A| 
is equal to N, all non-dominated individuals are copied to P'. If 
|A| is greater than N, the farthest first method [57], [58] is used 
to select N individuals from A to P'. 

C. Change Response 
The overall procedure of the change response strategy in 

DMOEA-DVC is presented in Algorithm 4. In change response, 
DMOEA-DVC applies maintenance, diversity introduction, 
and prediction approach for the three types of decision varia-
bles defined in Section III.A, respectively: 

1) Maintenance: If a decision variable is a similar variable, 
DMOEA-DVC leaves the value of this variable unchanged in 
change response. 

2) Diversity introduction: If a decision variable is an unpre-
dictable variable, a random re-initialization strategy is applied 
on this variable. Particularly, the variable is updated as follows: 
 ( 1) L ( ) *(U ( ) L ( ) )i i i ix t t rand t t+ = + −   (10) 
where Li(t) and Ui(t) represent the lower and upper bounds of 
the i-th variable at time step t, respectively, and rand is a ran-
dom value in [0,1]. 

3) Prediction approach: If a decision variable is classified as 
predictable, it is re-initialized by the center prediction with 
Kalman filter [25], [33] that is characterized by short training 
cycle. Kalman filter provides an efficient computational means 
to estimate the state of a process, in a way that minimizes the 
mean of the squared error [59]. Here we utilize Kalman filter to 
predict the population center x_p at time step (t+1), i.e., 
 Kalman( ( ))x_p x_center t=   (11) 
and use the predicted center to re-initialize the predictable 
decision variables as follows: 
 ( 1) ( ) ( )i i i ix t x t x_p x_center t+ = + −   (12) 
where x_pi is the i-th decision variable of x_p. 

Every new decision variable should be repaired if it violates 
the boundary constriction, i.e., 

 
L ( ) ( ) L ( )

( )
U ( ) ( ) U ( )

i i i
i

i i i

t if x t t
x t

t if x t t
<

=  >
  (13) 

The boundary points are critical to explore the Pareto front 
[60], [61]. To prevent from losing the boundary points in the 
new environment, DMOEA-DVC retains the m boundary 
points of the population at time step t (lines 6-line 11 of Algo-
rithm 4). On t=1, DMOEA-DVC re-initializes all variables by 
polynomial mutation. At the end of the change response, the 
decision variable classification in static optimization is im-
plemented because the types of some decision variables in the 
static optimization may change in different environments.  

D. Offspring Generation 
The pseudo-code of offspring generation is shown in Algo-

rithm 5. The simulated binary crossover (SBX) or differential 
evolution (DE) crossover operator is used to generate the values 
of a decision variable depending on whether the decision var-
iable is multi-optimal variable or not. SBX and DE crossover 

Algorithm 4: ChangeResponse(P) 
1 Input: P (parent population) 
2 
 

Output: P (updated parent population), A (updated archive 
population), P' (updated offspring population), flag_multi 

3 (ttest, flag_predict, x_center, x_trial) = ClassificationCR(P); 
4 P' = x_trial ∪{x_center}; 
5 Clear A and copy nondominated solutions in P' to A; 
6 for i = 1 to m 
7 
8 
9 
10 

 y = argmin(fi(x1, t), fi(x2, t), …, fi(xN, t)); 
 Evaluate individual y and add y  to P';  
 Remove all solutions in A that is dominated by y; 
 Add y to A if y is not dominated by any other solutions in A; 

11 end for 
12 for i = 1 to N - m - n -1 
13  for j = 1 to n 
14   if ttest[j] > β 
15    if flag_predict[j] == false; 
16     Re-initialize xi 

j  by Eq. (10); 
17    Else 
18     Re-initialize xi 

j  by Eq. (12); 
19    end if 
20   end if 
21  end for 
22 
23 
24 

 Evaluate individual xi and add xi to P';  
 Remove all solutions in A that is dominated by xi; 
 Add xi to A if xi is not dominated by any other solutions in A; 

25 end for 
26 P = P'; 
27 flag_multi = ClassificationSO (A); 

 

Algorithm 5: GenerateOffspring(flag_multi, P, A) 
1 
 
 

Input: flag_multi (set of Boolean values to indicate whether a 
variable is multi-optimal variable or not), P (parent population), A 
(archive population) 

2 Output: x (offspring individual) 
3 Random pick an individual a from archive A; 
4 Perform binary tournament selection on P to select two distinct 
 individuals b and c; 
5 for i = 1 to n 
6  if (flag_multi[i] == true) 
7   xi = DE(ai, bi, ci); 
8  else 
9   xi = SBX(ai, bi); 
10  end if 
11 end for 
12 PolynomialMutation(x); 
13 evaluate x; 
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operators are two commonly used crossover operators in 
MOEAs. Fig. 1 shows an example of the distribution of the 
offspring solutions generated by these two crossover operators. 
The offspring solutions generated by SBX are closer to the 
parent solutions, whereas the offspring solutions generated by 
DE crossover are far away from the parent solutions.  

As stated in Section III.A, multi-optimal variables should be 
generated far from the parents, where DE crossover operator 
should be used. The single-optimal variables should be gener-
ated near the parents, i.e., SBX is selected. Fig. 2 shows that the 
population generated by the mixed crossover operator con-
verges well to PF(0) and achieves an even distribution within 
the first ten generations. The population generated by the SBX 
operator can converge to PF(0) within the first ten generations, 
but it does not show good coverage. The population generated 
by DE crossover operator is able to achieve a wider distribution 
within the first twenty generations, but it cannot converge to 
PF(0). In addition to the mixed crossover operator, 
DMOEA-DVC also uses polynomial mutation to mutate the 
solutions.  

E. Population Update 
DMOEA-DVC uses the same steady population update 

strategy as SGEA [33]. The population update strategy is 
carried out in both parent population P and the archive A. A 
newly generated individual y is used to replace the worst indi-
vidual in P, and update A. Firstly, if y is not the same as any 
individual in P, y is compared with each individual in P. If y ≺ xi, 
the fitness value of xi is increased by one. If xi ≺ y, the fitness 
value of y is increased by one. Secondly, the individual in P 
with the highest fitness value is identified as z. If y is not worse 
than z in terms of fitness value, y replaces z and all individuals 
dominated by y in A are removed. Finally, y is added to A if A is 
not full. 

F. Computational Complexity 
The computational cost of the static optimization is mainly 

involved in the offspring generation, population update, envi-
ronmental selection, and decision variable classification. The 
computational complexity of offspring generation is O(mn), 
where m is the number of objectives and n is the number of 
decision variables. The computational cost of population up-
date is O(mN), where N is the population size. The environ-
mental selection consumes max(O(mN2), O(N2logN)) compu-
tational cost. In decision variable classification, calculating the 
rank of each decision variable calls for O(nN2) computational 
cost. Calculating the rank for each objective value and the 
correlation coefficient matrix require costs of O(mN2) and 
O(nmN), respectively. As such, the computational cost of 
decision variable classification in static optimization is 
max(O(nN2), O(mN2), O(nmN)). Overall, the computational 
cost of DMOEA-DVC for one generational cycle in static 
optimization is max(O(nN2), O(mN2), O(nmN), O(N2logN)). 
The computational cost of change response is mainly consumed 
by the archive update, offspring update, and decision variable 
classification. The computational cost of archive update and 
offspring population update is O(N2). In decision variable 
classification, the t-test, x_center, and x_trial are computed at 
the costs of O(nN), O(n), and O(n2), respectively. Therefore, 
the computational complexity of change response is max(O(n2), 
O(N2)). 

IV. EXPERIMENTAL STUDY 
The experiment study of this work is designed following [25], 

[26], and [33]. The proposed DMOEA-DVC is compared with 
the other six state-of-the-art DMOEAs on 33 benchmark 
DMOPs. The detailed experimental design and results are 
presented as follows. 

A. Benchmark Problems 
A total of 33 benchmarks are tested in this article, including 

five FDA [4], three dMOP [19], two DIMP [41], nine JY [42], 
and fourteen DF [43] test problems. Particularly, four of these 
problems are revised as follows. In FDA2, there is no such 
characteristic that the PF(t) changes from concave to convex as 
the original paper described. Therefore, to enable the PF(t) of 
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(a) 100 solutions produced by SBX     (b) 100 solutions produced by DE 

 
Fig. 1. (a) and (b) show 100 solutions produced by SBX crossover operator 
and DE crossover operator, respectively. The blue asterisks represent the 
offspring solutions. The red circle represents the parent solutions. Since DE 
uses three solutions to generate an offspring solution, the parent solution x3 
used by DE is random generated in the whole decision space. The parent 
solutions x1 and x2 used by SBX and DE are both (0.4, 0.6) and (0.6, 0.4), 
respectively.  
 

 
(a) mixed crossover operator 

 
(b) SBX crossover operator 

 
(c) DE crossover operator 

 
Fig. 2. (a), (b), and (c) show the population generated by mixed, SBX, and DE 
crossover operators in the objective space, respectively. The tested benchmark 
is FDA1, where the time parameters are all set to zero. The subfigures from 
left to right are populations in the first, tenth, twentieth, and thirtieth genera-
tion, respectively. The black solid line is PF(0). 
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FDA2 to possess this characteristic, some factors in the objec-
tive functions in FDA2 are changed. In the original dMOP3, the 
values of distance-related variables can be negative, but not the 
values of position-related variables. In addition, the dis-
tance-related and position-related variables may shift one 
another. These phenomena impede DMOEAs to work on 
dMOP3. Hence, the ranges of distance-related and posi-
tion-related variables are set to the same, and the objective 
function value is always adjusted to be positive. In the original 
JY4 problem, the objective value may be negative, which is not 
consistent with the description in the original paper. To fix this 
issue, we set the negative values to zeros. When solving the 
original JY9 problem, none of the algorithms can converge to 
the PS(t) at a certain time steps because the PS(t) is not in the 
decision space. In this study, the decision space of JY9 is 
changed. The details of the revised FDA2, dMOP3, JY4 and 
JY9 are provided in Table SI of the Supplementary Materials. 

B. Compared Algorithms and Parameter Settings 
DMOEA-DVC is compared with six state-of-the-art 

DMOEAs including DNSGA-II-B [1], PPS [25], MOEA/D-KF 
[26], SGEA [33], Tr-DMOEA [35], and DMOEA-CO [52] in 
this study. For a fair comparison, most parameters of these 
algorithms are set according to the original references. Never-
theless, some parameters are tuned to better fit the experiment. 
The parameter settings are summarized as follows (without 
specification, the parameter settings used below are applicable 
to all algorithms):  

1) On two-objective and three-objective problems, the pop-
ulation size is set to 100 and 105, respectively. For all problems, 
the number of decision variables is set to 11. 

2) Some algorithms treat change response as an independent 
generation, but not in the others. For the sake of simplicity, we 
do not treat change response as an independent generation for 
all algorithms in this study.  

3) It is worth noting that, in the benchmark DMOPs, no 
change takes place in the first 50 generations, so as to minimize 
the effect of static optimization [33]. The total number of 
generations is set to 10ntτt +50, i.e., ensuring 10nt changes in all. 
nt is fixed to 10 and τt is set to 5, 10 and 20.  

4) The parameters α and β used in DMOEA-DVC is empir-
ically set to 0.6 and 5, respectively.  

5) Each algorithm is run 30 times independently on each test 
instance and the average results are reported. 

C. Performance Evaluation Metric 
In this study, the following performance metrics are adopted 

to evaluated he performance of the algorithms:  
1) Inverted Generational Distance (IGD): IGD [3], [25], [60] 

is used as the performance evaluation metric. It evaluates the 
performance of the algorithms comprehensively in terms of 
convergence and diversity.  

Given the final population obtained by an algorithm P* and a 
set of uniformly sampling points S in PF, the IGD is calculated 
as follows: 

 
*| | *
1

*

d( , )
| |

P
ii

P S
IGD

P
== ∑   (14) 

where |P*| is the cardinality of P* and d(Pi
*, S) represents the 

minimum Euclidean distance in the objective space between 
the i-th point in P*

 and S. Lower IGD value indicates better 
performance of an algorithm. 

2) Hypervolume (HV): HV [33] measures the comprehensive 
performance of an algorithm. It is defined as the m-dimensional 
volume of the region enclosed by the obtained PF and a dom-
inated reference point zref in the objective space. 

Give the obtained solutions of an algorithm P* and a refer-
ence point in the objective space zref, the HV indicator measures 
the space covered by each point of P* in the objective space. 
HV corresponds to the nonoverlapping volume of all the hy-
percubes formed by the reference point zref and every point in P*, 
i.e., 

 
*

1

{ | }
P

i i
i

HV volume point PF
=

= ∈


  (15) 

where pointi is a non-dominated solution in P*, and volumei is 
the volume of the hypercube formed by zref and pointi. 
 To evaluate the performance of an algorithm in a dynamic 
environment, the IGD and HV used in this article are actually 
the average IGD and HV values of the last generation at each 
time step. The means and the standard deviations of IGD and 
HV value are reported, where the best values among the seven 
algorithms on each test problem are highlighted in bold type. 
The Wilcoxon rank-sum test [62] is used to point out the sig-
nificance between different results at the 0.05 significance level. 
(Due to space limit, the results of HV are provided in Section G 
of the Supplementary Materials). 

D. Results on Classic DMOPs 
This subsection presents the IDG results of the algorithms on 

the classic DMOPs namely the FDA, dMOP, DIMP, and JY 
problems. Due to space constraints, some of the results on JY 
are provided in Table SII of the Supplementary Materials. From 
Table I, it is seen that DMOEA-DVC obtains better perfor-
mance on most of the DMOPs in terms of IGD value. However, 
on FDA2, it performs worse than SGEA. The reason is that the 
PS(t) of FDA2 is unchanged, and all decision variable change 
slightly in different environments. DMOEA-DVC uses DE 
crossover operator to generate the values of multi-optimal 
variables, so the values of offspring variables change signifi-
cantly, which wastes computational resources in searching a 
wide space. In comparison, SGEA uses SBX crossover opera-
tor to generate all the variables, which can exploit a more 
promising space with fewer computing consumption. On FDA4, 
Tr-DMOEA is better than DMOEA-DVC, because the PF(t) of 
FDA4 does not change, and this type of DMOP is easy for 
Tr-DMOEA to build model and have a good performance. It is 
worth noting that, on JY3, all the decision variables are mul-
ti-optimal variables, and the decision variable classification in 
static optimization is actually invalid. However, 
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DMOEA-DVC still manages to obtain best performance on this 
problem thanks to the decision variable classification in change 
response. 

In addition, from the experimental results shown in Table I, it 
is observed that the change frequency has a significant impact 

on the performance of the algorithms except DMOEA-DVC, 
which demonstrates the robustness of DMOEA-DVC.  

Besides Table I, the average logarithmic IGD values of the 
last generation of every time step in each of the 30 independent 
experiments (nt=10, τt=10) on some representative problems 

TABLE I 
THE IGD COMPARISON RESULTS ON CLASSIC DMOPS 

Prob. (τt,nt) DMOEA-DVC SGEA DMOEA-CO DNSGA-II-B MOEA/D-KF Tr-DMOEA PPS 

FDA1 

(5,10) 1.20E-2(1.50E-3) 2.76E-2(3.45E-3) 4.52E-2(5.65E-3) 1.40E-1(1.75E-2) 1.88E-2(2.35E-3) 1.44E-1(1.80E-2) 4.12E-2(5.15E-3) 

(10,10) 7.11E-3(8.89E-4) 1.27E-2(1.59E-3) 2.19E-2(2.74E-3) 4.87E-2(6.08E-3) 1.10E-2(1.37E-3) 5.65E-2(7.06E-3) 4.04E-2(5.04E-3) 

(20,10) 5.53E-3(6.92E-4) 6.93E-3(8.66E-4) 1.11E-2(1.39E-3) 2.32E-2(2.90E-3) 7.61E-3(9.51E-4) 3.00E-2(3.75E-3) 1.23E-2(1.54E-3) 

FDA2 

(5,10) 5.02E-3(6.27E-4) 4.55E-3(5.69E-4) 2.95E-2(3.68E-3) 7.87E-3(9.84E-4) 1.10E-2(1.37E-3) 9.88E-2(1.24E-2) 3.75E-2(4.68E-3) 

(10,10) 4.78E-3(5.98E-4) 4.28E-3(5.35E-4) 1.17E-2(1.47E-3) 7.16E-3(8.95E-4) 8.83E-3(1.10E-3) 5.38E-2(6.73E-3) 8.70E-3(1.09E-3) 

(20,10) 4.67E-3(5.84E-4) 4.14E-3(5.17E-4) 7.75E-3(9.69E-4) 6.83E-3(8.54E-4) 8.97E-3(1.12E-3) 2.02E-2(2.53E-3) 6.74E-3(8.43E-4) 

FDA3 

(5,10) 4.90E-2(6.12E-3) 8.54E-2(1.07E-2) 1.90E-1(2.38E-2) 4.46E-1(5.57E-2) 8.00E-2(1.00E-2) 1.48E+0(1.85E-1) 2.33E-1(2.92E-2) 

(10,10) 3.30E-2(4.12E-3) 6.98E-2(8.72E-3) 1.14E-1(1.42E-2) 1.81E-1(2.26E-2) 3.87E-2(4.84E-3) 6.06E-1(7.58E-2) 1.95E-1(2.43E-2) 

(20,10) 1.97E-2(2.46E-3) 6.23E-2(7.79E-3) 7.22E-2(9.03E-3) 3.63E-2(4.53E-3) 2.17E-2(2.71E-3) 5.95E-1(7.44E-2) 1.68E-1(2.10E-2) 

FDA4 

(5,10) 1.06E-1(1.33E-2) 3.30E-1(4.12E-2) 1.38E-1(1.72E-2) 6.85E-1(8.57E-2) 1.22E-1(1.53E-2) 7.29E-2(9.11E-3) 1.45E-1(1.81E-2) 

(10,10) 7.42E-2(9.27E-3) 1.50E-1(1.87E-2) 1.20E-1(1.50E-2) 5.58E-1(6.97E-2) 9.38E-2(1.17E-2) 7.10E-2(8.88E-3) 1.13E-1(1.41E-2) 

(20,10) 6.40E-2(8.00E-3) 7.78E-2(9.72E-3) 1.17E-1(1.46E-2) 4.28E-1(5.35E-2) 7.92E-2(9.90E-3) 7.09E-2(8.86E-3) 1.09E-1(1.36E-2) 

FDA5 

(5,10) 2.89E-1(3.61E-2) 4.39E-1(5.49E-2) 4.23E-1(5.29E-2) 6.93E-1(8.66E-2) 2.94E-1(3.67E-2)= 8.03E-1(1.00E-1) 5.82E-1(7.28E-2) 

(10,10) 1.37E-1(1.71E-2) 2.17E-1(2.71E-2) 2.96E-1(3.70E-2) 5.14E-1(6.42E-2) 2.15E-1(2.69E-2) 4.15E-1(5.19E-2) 2.80E-1(3.50E-2) 

(20,10) 1.00E-1(1.25E-2) 1.19E-1(1.49E-2) 2.06E-1(2.58E-2) 4.39E-1(5.48E-2) 1.93E-1(2.41E-2) 1.71E-1(2.14E-2) 1.86E-1(2.32E-2) 

dMOP1 

(5,10) 4.11E-3(5.14E-4) 6.92E-3(8.65E-4) 9.99E-3(1.25E-3) 6.03E-3(7.53E-4) 5.36E-3(6.70E-4) 4.51E+0(5.64E-1) 1.33E-1(1.66E-2) 

(10,10) 4.03E-3(5.04E-4) 4.70E-3(5.88E-4) 5.71E-3(7.14E-4) 6.17E-3(7.72E-4) 4.49E-3(5.61E-4) 2.34E+0(2.92E-1) 6.46E-2(8.08E-3) 

(20,10) 3.99E-3(4.98E-4) 4.09E-3(5.11E-4) 5.40E-3(6.75E-4) 6.14E-3(7.68E-4) 4.08E-3(5.10E-4) 8.67E-1(1.08E-1) 2.70E-2(3.37E-3) 

dMOP2 

(5,10) 1.46E-2(1.82E-3) 3.44E-2(4.30E-3) 4.32E-2(5.40E-3) 2.14E-1(2.68E-2) 2.97E-2(3.71E-3) 2.98E+1(3.73E+0) 4.15E-2(5.19E-3) 

(10,10) 7.76E-3(9.70E-4) 1.35E-2(1.69E-3) 2.24E-2(2.80E-3) 5.93E-2(7.42E-3) 1.33E-2(1.66E-3) 2.49E+1(3.12E+0) 1.56E-2(1.95E-3) 

(20,10) 5.66E-3(7.08E-4) 6.81E-3(8.51E-4) 1.12E-2(1.39E-3) 2.02E-2(2.53E-3) 6.81E-3(8.51E-4) 2.13E+1(2.66E+0) 1.27E-2(1.58E-3) 

dMOP3 

(5,10) 2.07E-2(2.59E-3) 1.32E-1(1.65E-2) 1.59E-1(1.99E-2) 3.32E-1(4.15E-2) 9.79E-2(1.22E-2) 1.60E+0(2.00E-1) 1.76E-1(2.20E-2) 

(10,10) 8.79E-3(1.10E-3) 6.95E-2(8.69E-3) 6.15E-2(7.69E-3) 6.13E-2(7.66E-3) 3.81E-2(4.76E-3) 1.59E+0(1.99E-1) 8.00E-2(1.00E-2) 

(20,10) 5.71E-3(7.14E-4) 2.20E-2(2.75E-3) 2.22E-2(2.78E-3) 1.62E-2(2.02E-3) 1.26E-2(1.57E-3) 1.53E+0(1.91E-1) 7.74E-2(9.68E-3) 

DIMP1 

(5,10) 1.57E-2(1.97E-3) 3.78E-2(4.72E-3) 1.86E-1(2.33E-2) 3.93E-1(4.91E-2) 4.22E-2(5.27E-3) 1.32E+0(1.65E-1) 2.62E-1(3.28E-2) 

(10,10) 8.11E-3(1.01E-3) 1.74E-2(2.18E-3) 3.16E-2(3.95E-3) 1.36E-1(1.70E-2) 1.72E-2(2.14E-3) 5.81E-1(7.27E-2) 8.91E-2(1.11E-2) 

(20,10) 6.04E-3(7.55E-4) 8.74E-3(1.09E-3) 1.34E-2(1.68E-3) 4.72E-2(5.90E-3) 8.15E-3(1.02E-3) 1.67E-1(2.08E-2) 3.33E-2(4.16E-3) 

DIMP2 

(5,10) 2.01E+0(2.51E-1) 2.09E+0(2.61E-1) 1.29E+1(1.61E+0) 1.23E+1(1.54E+0) 4.11E+0(5.14E-1) 1.12E+1(1.40E+0) 9.80E+0(1.23E+0) 

(10,10) 3.03E-1(3.79E-2) 5.97E-1(7.46E-2) 1.13E+1(1.41E+0) 1.07E+1(1.34E+0) 1.64E+0(2.05E-1) 8.81E+0(1.10E+0) 8.53E+0(1.07E+0) 

(20,10) 1.07E-1(1.34E-2) 2.78E-1(3.47E-2) 9.96E+0(1.25E+0) 8.53E+0(1.07E+0) 3.69E-1(4.61E-2) 6.62E+0(8.28E-1) 8.25E+0(1.03E+0) 

JY2 

(5,10) 1.31E-2(1.64E-3) 3.19E-2(3.99E-3) 8.40E-2(1.05E-2) 2.05E-1(2.57E-2) 2.46E-2(3.07E-3) 3.73E-1(4.66E-2) 6.83E-2(8.53E-3) 

(10,10) 7.40E-3(9.25E-4) 1.73E-2(2.16E-3) 4.16E-2(5.20E-3) 7.21E-2(9.01E-3) 1.09E-2(1.36E-3) 1.53E-1(1.92E-2) 4.20E-2(5.24E-3) 

(20,10) 5.59E-3(6.99E-4) 8.62E-3(1.08E-3) 1.74E-2(2.17E-3) 3.27E-2(4.09E-3) 6.61E-3(8.26E-4) 4.18E-2(5.22E-3) 1.33E-2(1.66E-3) 

JY3 

(5,10) 4.23E-2(5.29E-3) 1.17E-1(1.46E-2) 5.49E-2(6.87E-3) 5.42E-2(6.78E-3) 3.87E-2(4.84E-3) 2.70E-1(3.38E-2) 1.24E-1(1.55E-2) 

(10,10) 2.87E-2(3.58E-3) 7.46E-2(9.33E-3) 4.45E-2(5.56E-3) 3.78E-2(4.72E-3) 3.18E-2(3.98E-3) 1.50E-1(1.87E-2) 5.75E-2(7.19E-3) 

(20,10) 2.31E-2(2.89E-3) 4.42E-2(5.52E-3) 3.41E-2(4.26E-3) 2.38E-2(2.98E-3) 2.83E-2(3.54E-3) 7.33E-2(9.16E-3) 4.36E-2(5.45E-3) 

JY6 

(5,10) 1.04E+0(1.30E-1) 1.79E+0(2.23E-1) 4.39E+0(5.48E-1) 4.36E+0(5.45E-1) 2.61E+0(3.26E-1) 9.16E+0(1.14E+0) 4.08E+0(5.10E-1) 

(10,10) 2.29E-1(2.86E-2) 7.12E-1(8.90E-2) 3.25E+0(4.07E-1) 3.04E+0(3.80E-1) 1.85E+0(2.32E-1) 6.41E+0(8.02E-1) 3.29E+0(4.11E-1) 

(20,10) 4.69E-2(5.86E-3) 2.36E-1(2.95E-2) 2.69E+0(3.36E-1) 2.45E+0(3.07E-1) 9.18E-1(1.15E-1) 4.26E+0(5.33E-1) 2.77E+0(3.46E-1) 

JY9 

(5,10) 3.38E-1(4.23E-2) 1.01E+0(1.26E-1) 3.05E+0(3.81E-1) 1.45E+0(1.81E-1) 5.86E-1(7.33E-2) 1.70E+0(2.12E-1) 1.80E+0(2.25E-1) 

(10,10) 5.32E-2(6.65E-3) 2.88E-1(3.60E-2) 1.36E+0(1.70E-1) 1.05E+0(1.31E-1) 2.02E-1(2.53E-2) 1.20E+0(1.50E-1) 9.79E-1(1.22E-1) 

(20,10) 3.51E-2(4.39E-3) 5.41E-2(6.76E-3) 4.74E-1(5.93E-2) 3.90E-1(4.87E-2) 5.79E-2(7.23E-3) 7.31E-1(9.13E-2) 9.68E-1(1.21E-1) 
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are also plotted in Fig. 3. The curves of more classic DMOPs 
are provided in Fig. S1 of the Supplementary Materials. 
DMOEA-DVC is shown to converge quickly and maintain 
good diversity on most problems. Owning to the use of AR  
prediction model, which requires a training cycle, PPS gets 
significant improvement in later iterations on FDA1 and JY2. 
On the other hand, since the training cycle is computationally 
inefficient, the overall performance of PPS is not satisfactory. 
DMOEA-DVC requires less training time to attain better per-
formance.  

To better show the PF(t) tracking capability of each algo-
rithm, we also plot the populations obtained by each algorithm 
in the first 30 changes on some representative problems in Fig. 
4. It is clearly observed that DMOEA-DVC has better overall 
tracking capability than the other algorithms on most problems.  

The HV results on the classic DMOPs are provided in Tables 
SIX-SX of the Supplementary Materials, where DMOEA-DVC 
consistently shows better overall performance on FDA, dMOP, 
DIMP, and JY problems. 

E. Results on New DMOPs 
The DF benchmark was proposed recently in CEC2018 

Competition on Dynamic Multi-objective Optimization. From 
Table II, we can see that, DMOEA-DVC performs best on 

two-thirds of the DF problems in terms of IGD value. On DF2, 
DMOEA-DVC is worse than Tr-DMOEA, because like FDA4, 
the PF(t) of DF2 is unchanged. Unlike the FDA, dMOP, and 
DIMP problems, some of the DF problems (i.e., DF3, DF4, 
DF7, DF8, DF9, DF10, DF11 and DF12) have nonlinear link-
ages between the decision variables. DMOEA-DVC obtains the 
best IGD values on DF4, DF8, DF9 and DF10. All decision 
variables of these problems are multi-optimal variables. The 
variable classification in static optimization of DMOEA-DVC 
fails on these problems, yet the classification in change re-
sponse still works leading to promising performance. 

Fig. 5 shows the curves of the average logarithmic IGD 
values on some representative DF problems. The curves of 
more new DMOPs are provided in Fig. S2 of the Supplemen-
tary Materials. As can be seen that, compared with the other 
algorithms, the IGD value of DMOEA-DVC is more stable and 
recovers faster in most environment changes. The PF(t) 
tracking capability of each algorithm on DF problems is shown 
in Fig. 6. DMOEA-DVC is observed to have significantly 
better tracking capability than the other algorithms on most DF 
problems. The HV results on the DF problems are reported in 
Table SXI of the Supplementary Materials. DMOEA-DVC also 
shows superiority in most of the DF problems. 
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Fig. 3. Evolution curves of average log(IGD) values for FDA1, FDA2 and dMOP3 with τt = 10 and nt = 10. 
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 (a)DMOEA-DVC   (b) SGEA         (c)Tr-DMOEA           (d)MOEA/D-KF              (e) PPS                (f) DMOEA-CO         (g) DNSGA-II-B 

Fig. 4. Obtained PF(t) on FDA1, FDA2, dMOP3, and JY2 with τt = 10 and nt = 10. The subfigures (a), (b), (c), (d), (e), (f) and (g) show the results of DMOEA-DVC, 
SGEA, Tr-DMOEA, MOEA/D-KF, PPS, DMOEA-CO and DNSGA-II-B, respectively (each column per algorithm). The line and the point represent the real PF(t) 
and PF(t) identified by each algorithm, respectively. 
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F. Running Time Cost 
The good performance of DMOEA-DVC does not come 

without a price. We test the running cost of all compared 
DMOEAs in terms of CPU time on FDA1 (two-objective), 
FDA4 (three-objective), dMOP3 (severe diversity loss), and 

DIMP1 (hard to converge). As the results shown in Table SVII 
of the Supplementary Materials, DNSGA-II-B consumes less 
time than the other approaches. DMOEA-DVC is faster than 
MOEA/D-KF, PPS, and Tr-DMOEA, but uses more time than 
SGEA and DMOEA-CO.  

TABLE II 
THE IGD COMPARISON RESULTS ON RECENT DMOPS 

Prob. (τt,nt) DMOEA-DVC SGEA DMOEA-CO DNSGA-II-B MOEA/D-KF Tr-DMOEA PPS 

DF1 

(5,10) 1.45E-2(1.82E-3) 3.38E-2(4.22E-3) 4.21E-2(5.26E-3) 2.71E-1(3.39E-2) 2.85E-2(3.56E-3) 1.64E-2(2.05E-3) 3.97E-2(4.97E-3) 

(10,10) 7.74E-3(9.68E-4) 1.35E-2(1.69E-3) 2.08E-2(2.60E-3) 4.32E-2(5.39E-3) 1.48E-2(1.85E-3) 8.62E-3(1.08E-3) 1.60E-2(2.01E-3) 

(20,10) 5.65E-3(7.07E-4) 6.76E-3(8.45E-4) 1.09E-2(1.36E-3) 1.92E-2(2.40E-3) 7.33E-3(9.17E-4) 5.66E-3(7.07E-4)= 1.26E-2(1.57E-3) 

DF2 

(5,10) 2.06E-2(2.57E-3) 2.11E-1(2.63E-2) 9.47E-2(1.18E-2) 1.70E-1(2.13E-2) 9.49E-2(1.19E-2) 4.55E-3(5.68E-4) 9.32E-2(1.16E-2) 

(10,10) 8.03E-3(1.00E-3) 1.61E-1(2.01E-2) 5.03E-2(6.28E-3) 8.17E-2(1.02E-2) 4.43E-2(5.54E-3) 4.18E-3(5.22E-4) 3.84E-2(4.80E-3) 

(20,10) 5.68E-3(7.10E-4) 9.70E-2(1.21E-2) 1.77E-2(2.22E-3) 1.97E-2(2.46E-3) 1.38E-2(1.72E-3) 4.15E-3(5.19E-4) 3.47E-2(4.33E-3) 

DF3 

(5,10) 2.32E-1(2.90E-2) 3.86E-1(4.83E-2) 8.44E-1(1.06E-1) 1.40E-1(1.75E-2) 4.54E-2(5.68E-3) 3.95E-1(4.94E-2) 1.90E-1(2.38E-2) 

(10,10) 1.73E-1(2.16E-2) 3.68E-1(4.60E-2) 1.86E-1(2.33E-2) 6.73E-2(8.42E-3) 2.44E-2(3.04E-3) 3.44E-1(4.31E-2) 2.85E-2(3.57E-3) 

(20,10) 1.00E-1(1.25E-2) 3.61E-1(4.51E-2) 1.09E-1(1.37E-2) 4.91E-2(6.14E-3) 8.86E-3(1.11E-3) 1.32E-1(1.65E-2) 2.06E-2(2.57E-3) 

DF4 

(5,10) 4.09E-2(5.11E-3) 7.95E-2(9.94E-3) 1.47E+0(1.84E-1) 5.44E-2(6.80E-3) 5.48E-2(6.86E-3) 2.26E+0(2.82E-1) 2.00E-1(2.50E-2) 

(10,10) 2.56E-2(3.21E-3) 5.81E-2(7.26E-3) 7.34E-2(9.18E-3) 3.02E-2(3.78E-3) 3.74E-2(4.68E-3) 1.50E+0(1.88E-1) 6.74E-2(8.43E-3) 

(20,10) 1.79E-2(2.24E-3) 3.90E-2(4.88E-3) 3.51E-2(4.38E-3) 2.04E-2(2.56E-3) 2.94E-2(3.67E-3) 9.17E-1(1.15E-1) 2.98E-2(3.73E-3) 

DF5 

(5,10) 1.52E-2(1.90E-3) 4.96E-2(6.20E-3) 2.88E-1(3.59E-2) 1.44E-1(1.81E-2) 1.93E-2(2.41E-3) 3.47E-1(4.33E-2) 6.46E-2(8.08E-3) 

(10,10) 8.00E-3(1.00E-3) 2.69E-2(3.36E-3) 1.20E-1(1.51E-2) 7.71E-2(9.64E-3) 9.62E-3(1.20E-3) 1.58E-1(1.98E-2) 3.74E-2(4.68E-3) 

(20,10) 5.91E-3(7.39E-4) 1.65E-2(2.06E-3) 7.87E-2(9.84E-3) 4.12E-2(5.15E-3) 5.98E-3(7.47E-4)= 3.21E-2(4.01E-3) 1.34E-2(1.67E-3) 

DF6 

(5,10) 5.04E-1(6.30E-2) 1.62E+0(2.02E-1) 1.14E+1(1.42E+0) 7.29E+0(9.11E-1) 1.61E+0(2.02E-1) 9.81E+0(1.23E+0) 1.39E+1(1.74E+0) 

(10,10) 2.51E-1(3.14E-2) 7.89E-1(9.86E-2) 8.52E+0(1.06E+0) 5.06E+0(6.33E-1) 9.17E-1(1.15E-1) 7.55E+0(9.44E-1) 1.17E+1(1.46E+0) 

(20,10) 1.92E-1(2.40E-2) 4.72E-1(5.89E-2) 6.20E+0(7.75E-1) 3.64E+0(4.55E-1) 7.77E-1(9.72E-2) 3.67E+0(4.59E-1) 1.09E+1(1.36E+0) 

DF7 

(5,10) 6.26E-2(7.82E-3) 1.32E+0(1.65E-1) 7.09E-2(8.86E-3) 9.76E-2(1.22E-2) 1.82E-1(2.27E-2) 4.76E+0(5.95E-1) 7.34E-2(9.18E-3) 

(10,10) 4.42E-2(5.52E-3) 1.29E+0(1.62E-1) 2.88E-2(3.60E-3) 2.28E-2(2.85E-3) 1.68E-1(2.10E-2) 4.58E+0(5.73E-1) 2.87E-2(3.59E-3) 

(20,10) 3.81E-2(4.76E-3) 1.06E+0(1.32E-1) 1.95E-2(2.44E-3) 1.71E-2(2.14E-3) 1.61E-1(2.02E-2) 3.66E+0(4.58E-1) 2.64E-2(3.30E-3) 

DF8 

(5,10) 1.67E-2(2.09E-3) 2.46E-2(3.07E-3) 2.67E-1(3.34E-2) 3.19E-2(3.99E-3) 2.75E-2(3.43E-3) 2.05E-1(2.56E-2) 4.87E-2(6.08E-3) 

(10,10) 1.58E-2(1.98E-3) 2.01E-2(2.51E-3) 1.27E-1(1.59E-2) 2.03E-2(2.54E-3) 2.13E-2(2.67E-3) 1.12E-1(1.40E-2) 1.71E-2(2.13E-3) 

(20,10) 1.50E-2(1.88E-3) 1.70E-2(2.13E-3) 2.48E-2(3.10E-3) 1.80E-2(2.25E-3) 1.90E-2(2.37E-3) 3.50E-2(4.38E-3) 1.55E-2(1.94E-3) 

DF9 

(5,10) 6.36E-1(7.95E-2) 7.62E-1(9.53E-2) 4.17E-1(5.21E-2) 8.81E-1(1.10E-1) 3.64E-1(4.55E-2) 5.61E-1(7.01E-2) 6.15E-1(7.69E-2) 

(10,10) 2.10E-1(2.62E-2) 4.48E-1(5.60E-2) 2.97E-1(3.71E-2) 4.09E-1(5.12E-2) 2.61E-1(3.27E-2) 2.90E-1(3.63E-2) 3.86E-1(4.82E-2) 

(20,10) 7.59E-2(9.49E-3) 3.11E-1(3.89E-2) 2.34E-1(2.93E-2) 2.61E-1(3.27E-2) 2.10E-1(2.62E-2) 1.11E-1(1.38E-2) 3.31E-1(4.14E-2) 

DF10 

(5,10) 1.66E-1(2.08E-2) 1.76E-1(2.20E-2) 4.27E-1(5.34E-2) 3.35E-1(4.18E-2) 2.11E-1(2.63E-2) 2.71E-1(3.39E-2) 4.05E-1(5.06E-2) 

(10,10) 1.63E-1(2.04E-2) 1.71E-1(2.14E-2) 3.34E-1(4.17E-2) 2.69E-1(3.36E-2) 2.03E-1(2.54E-2) 2.20E-1(2.74E-2) 3.11E-1(3.88E-2) 

(20,10) 1.64E-1(2.05E-2) 1.67E-1(2.09E-2)= 2.96E-1(3.70E-2) 2.79E-1(3.48E-2) 1.97E-1(2.46E-2) 1.86E-1(2.32E-2) 2.84E-1(3.56E-2) 

DF11 

(5,10) 9.01E-2(1.13E-2) 1.10E-1(1.37E-2) 8.98E-2(1.12E-2)= 8.42E-2(1.05E-2) 7.88E-2(9.86E-3) 7.15E-2(8.94E-3) 9.27E-2(1.16E-2) 

(10,10) 7.18E-2(8.98E-3) 8.65E-2(1.08E-2) 8.03E-2(1.00E-2) 7.78E-2(9.73E-3) 7.31E-2(9.13E-3)= 6.52E-2(8.15E-3) 8.17E-2(1.02E-2) 

(20,10) 6.47E-2(8.08E-3) 6.96E-2(8.69E-3) 7.62E-2(9.53E-3) 7.44E-2(9.31E-3) 6.99E-2(8.74E-3) 6.61E-2(8.26E-3) 7.90E-2(9.87E-3) 

DF12 

(5,10) 3.31E-1(4.13E-2) 3.46E-1(4.32E-2) 4.28E-1(5.34E-2) 2.13E-1(2.66E-2) 1.47E-1(1.84E-2) 6.26E-1(7.83E-2) 6.06E-1(7.57E-2) 

(10,10) 2.40E-1(3.01E-2) 2.38E-1(2.98E-2)= 2.95E-1(3.68E-2) 1.67E-1(2.09E-2) 1.08E-1(1.34E-2) 5.30E-1(6.62E-2) 4.33E-1(5.41E-2) 

(20,10) 1.71E-1(2.14E-2) 1.54E-1(1.93E-2) 2.14E-1(2.68E-2) 1.51E-1(1.89E-2) 8.97E-2(1.12E-2) 4.87E-1(6.09E-2) 3.36E-1(4.20E-2) 

DF13 

(5,10) 1.61E-1(2.02E-2) 2.72E-1(3.40E-2) 3.19E-1(3.98E-2) 5.00E-1(6.25E-2) 2.57E-1(3.22E-2) 1.90E+0(2.37E-1) 5.15E-1(6.44E-2) 

(10,10) 1.14E-1(1.43E-2) 1.53E-1(1.91E-2) 2.24E-1(2.79E-2) 3.49E-1(4.37E-2) 2.42E-1(3.03E-2) 1.01E+0(1.26E-1) 2.07E-1(2.58E-2) 

(20,10) 1.01E-1(1.26E-2) 1.08E-1(1.35E-2) 2.05E-1(2.56E-2) 2.62E-1(3.27E-2) 2.42E-1(3.02E-2) 4.03E-1(5.04E-2) 1.75E-1(2.19E-2) 

DF14 

(5,10) 5.33E-2(6.66E-3) 8.07E-2(1.01E-2) 1.04E-1(1.30E-2) 2.01E-1(2.52E-2) 6.77E-2(8.46E-3) 1.28E+0(1.60E-1) 1.49E-1(1.87E-2) 

(10,10) 4.23E-2(5.28E-3) 5.52E-2(6.89E-3) 7.78E-2(9.72E-3) 1.25E-1(1.56E-2) 5.89E-2(7.36E-3) 1.06E+0(1.33E-1) 8.38E-2(1.05E-2) 

(20,10) 3.89E-2(4.86E-3) 4.23E-2(5.29E-3) 7.49E-2(9.36E-3) 9.31E-2(1.16E-2) 5.47E-2(6.84E-3) 1.02E+0(1.27E-1) 6.62E-2(8.28E-3) 

 
 



 
 
 

12 

The Table SVIII of the Supplementary Materials reports the 
CPU-time cost of environmental selection of DMOEA-DVC 
and SGEA, where ES refers to the time used by the environ-
mental selection of the algorithms and noES refers to the time 
used by the algorithm excluding environmental selection. 
Although the environmental selection strategies used in 
DMOEA-DVC and SGEA are the same, the CPU-time costs of 
environmental selection in these two algorithms are different. 
The reason is that DMOEA-DVC tends to obtain more 
non-dominated individuals than SGEA, and it is obviously 
more time-consuming to select the same number of individuals 
from more individuals. If we ignore the time cost of environ-
mental selection, DMOEA-DVC consumes less time than 
SGEA. Because the decision variable classification and other 
techniques introduced in DMOEA-DVC do not consume too 
much computational resource. 

The effects of parameter β, diversity introduction and pre-
diction, crossover operators, prediction models, and the 
maintenance strategy for handling tiny-changed variables are 
studied in the Supplementary Materials, where the configura-
tion of DMOEA-DVC is empirically justified.  

V. CONCLUSIONS 
This paper presents a DMOEA based on decision variable 

classification, namely DMOEA-DVC. It classifies the decision 

variables in both static optimization and change response stages. 
Different strategies are used to generate the values of different 
types of variables so as to achieve good balance of population 
diversity and convergence. DMOEA-DVC is compared with 
the other six state-of-the-art DMOEAs on 33 benchmark 
DMOPs. The experimental results show the efficiency of 
DMOEA-DVC. 

DMOEA-DVC has shown promising performance on vari-
ous benchmark problems, but it still suffers from the weakness 
in handling problems of slightly changed PS(t) or correlated 
variables. To address this shortcoming, the future work could 
be focused on introducing advanced AR model and other 
promising operators in the estimation of distribution algorithm 
[63], particle swarm optimisation [64], [65] or other algorithms 
[66], [67], [68] to the DMOEA-DVC framework. Different 
DMOPs [69], [70] could also be considered in the future work 
to have a more comprehensive test of the proposed algorithm. 
The source code of DMOEA-DVC is publically available at 
http://github.com/CIA-SZU/WTC. 
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Fig. 6. Obtained PF(t) on DF1, DF2, DF3 and DF7 with τt = 10 and nt = 10. The subfigures (a), (b), (c), (d), (e), (f) and (g) show the results of DMOEA-DVC, 
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