166 research outputs found

    Cytotoxic and Anti-HIV Phenanthroindolizidine Alkaloids from Cryptocarya chinensis

    Get PDF
    Bioassay-guided fractionation of the cytotoxic ethanol extract of Cryptocarya chinensis has led to the isolation of 11 compounds, including two phenanthroindolizidine alkaloids [(−)-antofine (1) and dehydroantofine (2)], five pavine alkaloids (3–7), and four proaporphine alkaloids (8–11). The structures of the isolated compounds were determined by means of NMR spectroscopic methods, and supported by HRMS and optical rotation data. Compounds 1 and 2 showed cytotoxic activity against four cancer cell lines, L1210, P388, A549, and HCT-8, with 1 being the most potent against A549 and HCT-8 with EC50 values of 0.002 and 0.001 μg/mL, respectively. In addition, 2 is first reported to exhibit significant anti-HIV activity

    Cytotoxic cardiac glycosides and coumarins from Antiaris toxicaria

    Get PDF
    Eight new cardiac glycosides/aglycones (antiaritoxiosides A–G, 1–7, and antiarotoxinin B, 8), two new coumarins (anticarins A–B, 41–42), and two new flavanones (antiarones L–K, 43–44) were isolated from trunk bark of Antiaris toxicaria together with 53 known compounds. The new structures were established by extensive analysis of spectroscopic data. Compound 1 (10-carboxy and 3α-hydroxy) and compounds 3–6 (10-hydroxy) contain unique substituents that are rarely found in cardiac glycosides. The cytotoxic effects of isolated compounds against ten human cancer cell lines, KB, KB-VIN, A549, MCF-7, U-87-MG, PC-3, 1A9, CAKI-1, HCT-9 and S-KMEL-2, were tested using the sulforhodamine B assay. Five compounds (12, 16, 20, 22, and 31) showed significant cytotoxicity against all ten cancer cell lines, with notable potency at the ng/mL level against some cell lines, which merits further development as clinical trial candidates

    Activations of Both Extrinsic and Intrinsic Pathways in HCT 116 Human Colorectal Cancer Cells Contribute to Apoptosis through p53-Mediated ATM/Fas Signaling by Emilia sonchifolia Extract, a Folklore Medicinal Plant

    Get PDF
    Emilia sonchifolia (L.) DC (Compositae), an herbaceous plant found in Taiwan and India, is used as folk medicine. The clinical applications include inflammation, rheumatism, cough, cuts fever, dysentery, analgesic, and antibacteria. The activities of Emilia sonchifolia extract (ESE) on colorectal cancer cell death have not been fully investigated. The purpose of this study explored the induction of apoptosis and its molecular mechanisms in ESE-treated HCT 116 human colorectal cancer cells in vitro. The methanolic ESE was characterized, and γ-humulene was formed as the major constituent (63.86%). ESE induced cell growth inhibition in a concentration- and time-dependent response by MTT assay. Apoptotic cells (DNA fragmentation, an apoptotic catachrestic) were found after ESE treatment by TUNEL assay and DNA gel electrophoresis. Alternatively, ESE stimulated the activities of caspase-3, -8, and -9 and their specific caspase inhibitors protected against ESE-induced cytotoxicity. ESE promoted the mitochondria-dependent and death-receptor-associated protein levels. Also, ESE increased ROS production and upregulated the levels of ATM, p53, and Fas in HCT 116 cells. Strikingly, p53 siRNA reversed ESE-reduced viability involved in p53-mediated ATM/Fas signaling in HCT 116 cells. In summary, our result is the first report suggesting that ESE may be potentially efficacious in the treatment of colorectal cancer

    Total synthesis of phenanthroindolizidine alkaloids (±)-antofine, (±)-deoxypergularinine, and their dehydro congeners and evaluation of their cytotoxic activity

    Get PDF
    Due to their limited natural abundance and significant biochemical effects, we synthesized the alkaloids (±)-antofine (1a), (±)-deoxypergularinine (1b), and their dehydro congeners (2 and 3) starting from the corresponding phenanthrene-9-carboxaldehydes. We also evaluated their in vitro cytotoxic activity. Compounds 1a and 1b showed significant potency against various human tumor cell lines, including a drug-resistant variant, with EC50 values ranging from 0.16–16 ng/mL. Structure–activity correlations of these alkaloids and some of their synthetic intermediates were also ascertained. The non-planar structure between the two major moieties, phenanthrene and indolizidine, plays a crucial role in the cytotoxic activity of phenanthroindolizidines. Increasing the planarity and rigidity of the indolizidine moiety significantly reduced potency. A methoxy group at the 2-position (1a) was more favorable for cytotoxic activity than a hydrogen atom (1b)

    New bichalcone analogs as NF-κB inhibitors and as cytotoxic agents inducing Fas/CD95-dependent apoptosis

    Get PDF
    A series of novel bichalcone analogs were synthesized and evaluated in lipopolysaccharide (LPS)-activated microglial cells as inhibitors of nitric oxide (NO) and for in vitro anticancer activity using a limited panel of four human cancer cell lines. All analogs inhibited NO production. Compounds 4 and 11 exhibited optimal activity with IC50 values of 0.3 and 0.5 µM, respectively, and were at least 38-fold better than the positive control. A mechanism of action study showed that both compounds significantly blocked the nuclear translocation of NF-κB p65 and up-regulation of iNOS at 1.0 µM. Compound 4 and three other analogs (3, 20, and 23) exerted significant in vitro anticancer activity GI50 values ranging from 0.70~13.10 µM. A mode of action study using HT-29 colon cancer cells showed that 23 acts by inducing apoptosis signaling

    Design, synthesis, and mechanism of action of 2-(3-hydroxy-5-methoxyphenyl)-6-pyrrolidinylquinolin-4-one as a potent anticancer lead

    Get PDF
    New 6- (or 6,7-) substituted 2-(hydroxyl substituted phenyl)quinolin-4-one derivatives were synthesized and screened for antiproliferative effects against cancer cell lines. Structure-activity relationship correlations were established and the most promising compound 2-(3-hydroxy-5-methoxyphenyl)-6-pyrrolidin-1-ylquinolin-4-one (6h) exhibited strong inhibitory activity against various human cancer cell lines, particularly non-small cell lung cancer NCI-H522. Additional studies suggested a mechanism of action resembling that of the antimitotic drug vincristine. The presence of a C-ring OH group in 6h will allow this compound to be converted readily to a water soluble and physiochemically stable hydrophilic prodrug. Compound 6h is proposed as a new anticancer lead compound

    Bioactive Constituents from the Roots of Panax japonicus var. major and Development of a LC-MS/MS Method for Distinguishing between Natural and Artifactual Compounds

    Get PDF
    Two new saponins, panajaponol (1) and pseudoginsenoside RT1 butyl ester (2), together with 35 known compounds (3–37), were isolated from the roots of Panax japonicus. The structures of 1 and 2 were elucidated on the basis of spectroscopic analysis and chemical methods. Furthermore, a LC-MS/MS method was developed for confirming 2, 3, and 8 as natural compounds containing a butyl ester group. This method should be useful for distinguishing between minor natural and artifactual compounds in Panax species. Moreover, compounds 3, 6, 8, 9, 11, 13, and 15 exhibited strong inhibition of superoxide anion generation and elastase release by human neutrophils in response to formyl-L-methionyl-L-leucyl-L-phenylalanine/cytochalasin B (fMLP/CB), with IC50 values ranging from 0.78 to 43.6 μM. In addition, 1 showed greater than two- to three-fold selective cytotoxic activity against KB and DU145 cancer cell lines

    Cardiac Glycosides from Antiaris toxicaria with Potent Cardiotonic Activity

    Get PDF
    An ethanolic extract of Antiaris toxicaria trunk bark showed potent in vitro cardiotonic effect on isolated guinea pig atria. Bioassay-guided fractionation of the extract led to identification of 9 new cardiac glycosides (1–9, named antiarosides A-I), antiarotoxinin A (10), and 18 known compounds. Their structures were established using MS and NMR spectroscopic studies, including homonuclear and heteronuclear correlation experiments. The ability of these cardiotonic compounds to produce positive inotropic action and their safety indexes were examined in comparison with those of ouabain, a classical inhibitor of Na+/K+-ATPase. Malayoside (23) was nearly equipotent and had a similar safety index to ouabain in guinea pig atria. However, the maximal positive inotropic effect and safety index of 23 in papillary muscle were better than those of ouabain. An electrophysiological recording showed that 23 inhibited sodium pump current in a concentration-dependent manner

    Camphoratins A−J, Potent Cytotoxic and Anti-inflammatory Triterpenoids from the Fruiting Body of Taiwanofungus camphoratus

    Get PDF
    Ten new triterpenoids, camphoratins A–J (1–10), along with 12 known compounds were isolated from the fruiting body of Taiwanofungus camphoratus. Their structures were established by spectroscopic analysis and chemical methods. Compound 10 is the first example of a naturally occurring ergosteroid with an unusual cis-C/D ring junction. Compounds 2–6 and 11 showed moderate to potent cytotoxicity with EC50 values ranging from 0.3 to 3 μM against KB and KB-VIN human cancer cell lines. Compounds 6, 10, 11, 14–16, 18, and 21 exhibited anti-inflammatory NO-production inhibition activity with IC50 values of less than 5 μM, which was more potent than the nonspecific NOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME)

    Antitumor Agents 288: Design, Synthesis, SAR, and Biological Studies of Novel Heteroatom-Incorporated Antofine and Cryptopleurine Analogues as Potent and Selective Antitumor Agents

    Get PDF
    Novel heteroatom-incorporated antofine and cryptopleurine analogs were designed, synthesized, and tested against a panel of five cancer cell lines. Two new S-13-oxo analogs (11 and 16) exhibited potent cell growth inhibition in vitro (GI50: 9 nM and 20 nM). Interestingly, both compounds displayed improved selectivity among different cancer cell lines, in contrast to the natural products antofine and cryptopleurine. MOAa studies suggested that R-antofine promotes dysregulation of DNA replication during early S phase, while no similar effects were observed for 11 and 15 on corresponding replication initiation complexes. Compound 11 also showed greatly reduced cytotoxicity against normal cells and moderate antitumor activity against HT-29 human colorectal adenocarcinoma xenograft in mice without overt toxicity
    corecore