120 research outputs found

    Distributed MPC for coordinated energy efficiency utilization in microgrid systems

    Full text link
    To improve the renewable energy utilization of distributed microgrid systems, this paper presents an optimal distributed model predictive control strategy to coordinate energy management among microgrid systems. In particular, through information exchange among systems, each microgrid in the network, which includes renewable generation, storage systems, and some controllable loads, can maintain its own systemwide supply and demand balance. With our mechanism, the closed-loop stability of the distributed microgrid systems can be guaranteed. In addition, we provide evaluation criteria of renewable energy utilization to validate our proposed method. Simulations show that the supply demand balance in each microgrid is achieved while, at the same time, the system operation cost is reduced, which demonstrates the effectiveness and efficiency of our proposed policy.Accepted manuscrip

    Estimating phylogenetic trees from genome-scale data

    Full text link
    As researchers collect increasingly large molecular data sets to reconstruct the Tree of Life, the heterogeneity of signals in the genomes of diverse organisms poses challenges for traditional phylogenetic analysis. A class of phylogenetic methods known as "species tree methods" have been proposed to directly address one important source of gene tree heterogeneity, namely the incomplete lineage sorting or deep coalescence that occurs when evolving lineages radiate rapidly, resulting in a diversity of gene trees from a single underlying species tree. Although such methods are gaining in popularity, they are being adopted with caution in some quarters, in part because of an increasing number of examples of strong phylogenetic conflict between concatenation or supermatrix methods and species tree methods. Here we review theory and empirical examples that help clarify these conflicts. Thinking of concatenation as a special case of the more general model provided by the multispecies coalescent can help explain a number of differences in the behavior of the two methods on phylogenomic data sets. Recent work suggests that species tree methods are more robust than concatenation approaches to some of the classic challenges of phylogenetic analysis, including rapidly evolving sites in DNA sequences, base compositional heterogeneity and long branch attraction. We show that approaches such as binning, designed to augment the signal in species tree analyses, can distort the distribution of gene trees and are inconsistent. Computationally efficient species tree methods that incorporate biological realism are a key to phylogenetic analysis of whole genome data.Comment: 39 pages, 3 figure

    Short branch attraction in phylogenomic inference under the multispecies coalescent

    Get PDF
    Accurate reconstruction of species trees often relies on the quality of input gene trees estimated from molecular sequences. Previous studies suggested that if the sequence length is fixed, the maximum likelihood may produce biased gene trees which subsequently mislead inference of species trees. Two key questions need to be answered in this context: what are the scenarios that may result in consistently biased gene trees? and for those scenarios, are there any remedies that may remove or at least reduce the misleading effects of consistently biased gene trees? In this article, we establish a theoretical framework to address these questions. Considering a scenario where the true gene tree is a 4-taxon star tree T∗=(S1,S2,S3,S4) with two short branches leading to the species S1 and S2, we demonstrate that maximum likelihood significantly favors the wrong bifurcating tree [(S1, S2), S3, S4] grouping the two species S1 and S2 with short branches. We name this inconsistent behavior short branch attraction, which may occur in real-world data involving a 4-taxon bifurcating gene tree with a short internal branch. If no mutation occurs along the internal branch, which is likely if the internal branch is short, the 4-taxon bifurcating tree is equivalent to the 4-taxon star tree and thus will suffer the same misleading effect of short branch attraction. Theoretical and simulation results further demonstrate that short branch attraction may occur in gene trees and species trees of arbitrary size. Moreover, short branch attraction is primarily caused by a lack of phylogenetic information in sequence data, suggesting that converting short internal branches to polytomies in the estimated gene trees can significantly reduce artifacts induced by short branch attraction

    Leaching behaviors of impurities in metallurgical-grade silicon with hafnium addition

    Get PDF
    Hf was employed as an impurity getter to enhance the removal of impurities from metallurgical-grade Si (MG-Si) via the solidification of Si or a Si-33 wt% Al solvent. The leaching behaviors of the impurities (B, Fe, Al, Ca, P, Zr, Ti, V, Mn, Hf, and Ni) within MG-Si, in the presence of 5 wt% Hf, were investigated using various leaching approaches. Compared with aqua regia and HF, HCl + HF was determined to be the optimal lixiviant for the elimination of impurities from Hf-containing MG-Si. The use of a combination of HCl + HF and aqua regia reduced the quantity of impurities from 6126 ppmw to 94 ppmw. Eh-pH diagrams were calculated to discuss the leaching of HfSi2 in aqua regia and HF solutions. The presence of Hf in the MG-Si enhanced the removal of impurities, especially P, which cannot be efficiently removed via solidification refining and hydrometallurgical treatments. Hf-containing Si-Al solvent refining is considered the most efficient approach for the elimination of impurities (except Al). The removal fractions of B and P were 94.2% and 86.2%, respectively, achieved via the solidification of the Si-33 wt% Al solvent. Moreover, 99.94% and 99.9996% of the Hf, used as an impurity getter, could be eliminated through the solidification of the Si and Si-33wt% Al solvent, respectively, decreasing from 50,000 ppmw, to 28 ppmw and 0.2 ppmw, respectively

    Improved Estimation of the Gross Primary Production of Europe by Considering the Spatial and Temporal Changes in Photosynthetic Capacity from 2001 to 2016

    Get PDF
    The value of leaf photosynthetic capacity (Vcmax) varies with time and space, but state-of-the-art terrestrial biosphere models rarely include such Vcmax variability, hindering the accuracy of carbon cycle estimations on a large scale. In particular, while the European terrestrial ecosystem is particularly sensitive to climate change, current estimates of gross primary production (GPP) in Europe are subject to significant uncertainties (2.5 to 8.7 Pg C yr−1). This study applied a process-based Farquhar GPP model (FGM) to improve GPP estimation by introducing a spatially and temporally explicit Vcmax derived from the satellite-based leaf chlorophyll content (LCC) on two scales: across multiple eddy covariance tower sites and on the regional scale. Across the 19 EuroFLUX sites selected for independent model validation based on 9 plant functional types (PFTs), relative to the biome-specific Vcmax, the inclusion of the LCC-derived Vcmax improved the model estimates of GPP, with the coefficient of determination (R2) increased by 23% and the root mean square error (RMSE) decreased by 25%. Vcmax values are typically parameterized with PFT-specific Vcmax calibrated from flux tower observations or empirical Vcmax based on the TRY database (which includes 723 data points derived from Vcmax field measurements). On the regional scale, compared with GPP, using the LCC-derived Vcmax, the conventional method of fixing Vcmax using the calibrated Vcmax or TRY-based Vcmax overestimated the annual GPP of Europe by 0.5 to 2.9 Pg C yr−1 or 5 to 31% and overestimated the interannually increasing GPP trend by 0.007 to 0.01 Pg C yr−2 or 14 to 20%, respectively. The spatial pattern and interannual change trend of the European GPP estimated by the improved FGM showed general consistency with the existing studies, while our estimates indicated that the European terrestrial ecosystem (including part of Russia) had higher carbon assimilation potential (9.4 Pg C yr−1). Our study highlighted the urgent need to develop spatially and temporally consistent Vcmax products with a high accuracy so as to reduce uncertainties in global carbon modeling and improve our understanding of how terrestrial ecosystems respond to climate change

    Regional uncertainty of GOSAT XCO_2 retrievals in China: quantification and attribution

    Get PDF
    The regional uncertainty of the column-averaged dry air mole fraction of CO_2 (XCO_2) retrieved using different algorithms from the Greenhouse gases Observing SATellite (GOSAT) and its attribution are still not well understood. This paper investigates the regional performance of XCO_2 within a latitude band of 37–42° N segmented into 8 cells in a grid of 5° from west to east (80–120° E) in China, where typical land surface types and geographic conditions exist. The former includes desert, grassland and built-up areas mixed with cropland; and the latter includes anthropogenic emissions that change from small to large from west to east, including those from the megacity of Beijing. For these specific cells, we evaluate the regional uncertainty of GOSAT XCO_2 retrievals by quantifying and attributing the consistency of XCO_2 retrievals from four algorithms (ACOS, NIES, OCFP and SRFP) by intercomparison. These retrievals are then specifically compared with simulated XCO_2 from the high-resolution nested model in East Asia of the Goddard Earth Observing System 3-D chemical transport model (GEOS-Chem). We also introduce the anthropogenic CO_2 emissions data generated from the investigation of surface emitting point sources that was conducted by the Ministry of Environmental Protection of China to GEOS-Chem simulations of XCO_2 over the Chinese mainland. The results indicate that (1) regionally, the four algorithms demonstrate smaller absolute biases of 0.7–1.1 ppm in eastern cells, which are covered by built-up areas mixed with cropland with intensive anthropogenic emissions, than those in the western desert cells (1.0–1.6 ppm) with a high-brightness surface from the pairwise comparison results of XCO_2 retrievals. (2) Compared with XCO_2 simulated by GEOS-Chem (GEOS-XCO_2), the XCO_2 values from ACOS and SRFP have better agreement, while values from OCFP are the least consistent with GEOS-XCO_2. (3) Viewing attributions of XCO_2 in the spatio-temporal pattern, ACOS and SRFP demonstrate similar patterns, while OCFP is largely different from the others. In conclusion, the discrepancy in the four algorithms is the smallest in eastern cells in the study area, where the megacity of Beijing is located and where there are strong anthropogenic CO_2 emissions, which implies that XCO_2 from satellite observations could be reliably applied in the assessment of atmospheric CO_2 enhancements induced by anthropogenic CO_2 emissions. The large inconsistency among the four algorithms presented in western deserts which displays a high albedo and dust aerosols, moreover, demonstrates that further improvement is still necessary in such regions, even though many algorithms have endeavored to minimize the effects of aerosols scattering and surface albedo

    Effect of 5/6 Nephrectomized Rat Serum on Epithelial-to-Mesenchymal Transition In Vitro

    Get PDF
    Objective: To investigate whether the 5/6 nephrectomized (5/6Nx) rats’ 12-week serum could lead to tubular epithelial-to-mesenchymal transition (EMT) and its molecular mechanism, so as to probe the potential stimulation from circulation in chronic progressive kidney disease. Methods: A total of 24 Sprague Dawley (SD) rats were randomly divided into two groups: sham operation group (sham group) and 5/6Nx group. Rats were killed 12 weeks after surgery to obtain 5/6Nx rats’ 12-week serum. Then we detected the expression of E-cadherin in renal tubular epithelial cells of the remaining kidney and we investigated whether the 12th week serum of 5/6Nx rats could cause HK-2 (human kidney proximal tubular cell line) cells to transdifferentiate into fibroblasts. Results: Our data confirmed that E-cadherin expression decreased significantly in the remaining kidney at 12 weeks, and the 5/6Nx rats’ 12-week serum could suppress E-cadherin protein and mRNA expression (p < 0.05). We also found that the 5/6Nx rats’ 12-week serum could upreg-ulate ZEB1, β-catenin, and wnt3 protein expression (p < 0.05). Conclusions: Our results demonstrated that the 5/6Nx rats’ 12-week serum could suppress the expression of E-cadherin in HK-2 cells. It was partially through modulating the increase of ZEB1. The loss of E-cadherin could lead β-catenin to localize to the cytoplasm and nucleus, and feed into the Wnt signaling pathway. It means that the pathogenic serum in chronic kidney disease (CKD) plays an important role in the loss of renal function and turns to be a new avenue of research with potential clinical implications
    corecore