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Abstract 

The heterogeneity of signals in the genomes of diverse organisms poses challenges for traditional 

phylogenetic analysis.  Phylogenetic methods known as ‘species tree methods’ have been 

proposed to directly address one important source of gene tree heterogeneity, namely the 

incomplete lineage sorting that occurs when evolving lineages radiate rapidly, resulting in a 

diversity of gene trees from a single underlying species tree.  Here we review theory and 

empirical examples that help clarify conflicts between species tree and concatenation methods, 

and misconceptions in the literature about the performance of species tree methods.  Considering 

concatenation as a special case of the more general case provided by the multispecies coalescent 

model (MSC) helps explain differences in the behavior of the two methods on phylogenomic 

data sets.  Recent work suggests that species tree methods are more robust than concatenation 

approaches to some of the classic challenges of phylogenetic analysis, including rapidly evolving 

sites in DNA sequences and long branch attraction.  We show that approaches such as binning, 

designed to augment the signal in species tree analyses, can distort the distribution of gene trees 

and are inconsistent.  Computationally efficient species tree methods incorporating biological 

realism are a key to phylogenetic analysis of whole genome data. 

 

Keywords: bias-variance dilemma, transcriptome, isochore, anomaly zone, recombination. 
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The emergence of phylogenomic data provides unprecedented opportunities to resolve 

challenging phylogenies of species and, ultimately, the Tree of Life. In the last few years, a 

number of phylogenetic and population genetic methods for analyzing the evolutionary history of 

whole genomes have emerged1-4.  These new methods are gradually replacing methods that were 

once the bulwarks of evolutionary genomics and molecular ecology in the PCR-era.  For 

example, recently the classic isolation-with migration model of phylogeography, originally 

introduced by Hey, Nielsen and others
5-7

 and widely used in likelihood and Bayesian formats, 

has been updated to accommodate whole genome data
8,9

.  Like most methods in 

phylogeography, these methods model genomic data as a series of unlinked or partially linked 

loci whose histories are influenced by the underlying demographic history of the species in 

question. The coalescent provides a robust and general framework for many of these new 

genome-scale models in phylogeography. 

 Like models in phylogeography, genome-scale methods in phylogenomics are 

undergoing a transition, grappling with the heterogeneity of signals that frequently emerge from 

genome-scale data10,11. Recent research has revealed a surprising array of such heterogeneous 

signals, including variation among loci in base composition, evolutionary rate, and, perhaps most 

conspicuously, topological congruence
12-16

.  Indeed, mirroring early insights into gene tree 

heterogeneity discovered in the 1980s in the context of phylogeography, gene tree heterogeneity 

in phylogenetics has emerged as a ubiquitous element, particularly as the number of loci in 

phylogenetic studies has increased
10

.  Yet, surprisingly, whereas phylogeography has dealt with 

this heterogeneity by acknowledging and modeling stochasticity – indeed, statistical 

phylogeography has not known any other means of modeling such variation – for decades such 

models made few in roads into phylogenetics.  Even as heterogeneity in gene trees was 
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acknowledged as a significant issue in phylogenetics
17

, concatenation or supermatrix methods 

provided the main paradigm in which phylogenetic models were developed to deal with diverse 

signals found in multilocus data
18

.  Perhaps more intriguing, then, is that, even as such so-called 

‘species tree’ or coalescent models have been developed in the context of phylogenetics, they are 

being embraced by phylogeneticists cautiously, or in some cases openly questioned
19,20

.  Such 

caution and questioning is no doubt healthy, but it also suggests that, for some researchers, the 

heterogeneity observed in gene trees is either deemed unimportant or inconsequential for 

phylogenetic analysis, or that the models developed thus far to deal with this heterogeneity are 

unsatisfying, incomplete or flawed. 

 Phylogenomic data have intensified debates over whether concatenation or coalescent 

methods in phylogenomics are more appropriate for analyzing multilocus sequence data
10,19,21,22

. 

Although recent phylogenomic studies suggest that the majority of relationships yielded by 

concatenation and coalescent trees are consistent with each other, or differ from each other 

without high statistical support
15,16,23,24

, recent examples of highly supported conflicting 

relationships favored by concatenation and coalescent methods have highlighted the details, 

weaknesses, and assumptions of both sets of methods
15,25-30

 . The significant differences in 

performance of concatenation and coalescent methods in estimating species trees flow directly 

from the distinct assumptions on which the two methods are based
17,31,32

.  Perhaps more 

importantly, it can be shown that under certain conditions the coalescent model reduces to the 

concatenation model
22

 (see below), which can help explain the frequent similarities between 

concatenation and coalescent trees in empirical data analyses.  Finally, in comparing 

concatenation and coalescent methods, important questions have been raised regarding the 

performance of coalescent methods under genetic forces such as within-gene recombination and 
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gene flow, or issues with data, such as sampling effort and strategies, missing data, misrooting of 

gene trees, binning (concatenating) of multiple loci or errors in gene tree estimation
19,20,33-37

.  

Whereas population genetic effects such as gene flow and recombination rarely figured in 

discussions of phylogenetic models in the supermatrix era, recent discussions of these topics 

appear to be a direct result of the advent of coalescent methods and mark a growing appreciation 

by phylogeneticists of the links between population genetics and phylogenetics
38,39

.  Overall, the 

current debates offer a glimpse of a field in transition, grappling with new signals and 

heterogeneity brought on by phylogenomics.  

 In this review we discuss a number of recent trends in the application of coalescent 

models to phylogenetic analysis, and address some recent criticisms of such models.  At its 

simplest, the multispecies coalescent model builds on the neutral coalescent model for single, 

isolated populations, in which the genealogy of sampled alleles follows probability distributions 

governed by simple demographic models, such as the Wright–Fisher model 40,41.  The 

multispecies coalescent model treats each branch in a species tree as a single, neutral 

coalescent population, and, going backwards in time, keeps track of the number of gene 

lineages entering extant or ancestral populations, and exiting those populations as they 

merge with other ancestral populations in the species tree (Figure 1).  These gene lineages 

ultimately comprise gene trees, which in turn provide the signal for estimating the overarching 

species tree that is usually the primary interest (Figure 1).  Most coalescent models in 

phylogenomics assume simple models of instantaneous speciation, in which no gene flow occurs 

after species begin to diverge.  Moreover, these models assume complete neutrality, no 

recombination within loci and free recombination between loci, such that loci can be treated as 

independent neutral replicates conditional on the phylogenetic history of the lineages under study 
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40,41.  Several recent papers have shown that violations of these assumptions can have varying 

effects on the outcome of phylogenetic analysis (Table 1), with some more severe than others.  

The main criticisms of coalescent methods in phylogenetics – articulated most forcefully in a 

series of papers and comments by Gatesy and Springer
19,20,25

 – focus on features of 

phylogenomic data sets that are perceived to violate the multispecies coalescent model (MSC).  

Such concerns focus on several issues, including the potential for recombination within loci, 

particularly for transcriptome data in which exons that might span megabases in the genome yet 

are ‘concatenated’ together, either in silico or by the cell during the process of transcription; the 

claim that different species tree methods yield conflicting results when applied to the same data 

sets; the suggestion that most gene tree heterogeneity results from effects other than incomplete 

lineage sorting (ILS); and confusion over the effects and implications of low-resolution gene 

trees on species tree estimation.  This last issue has also motivated the development of add-on 

methods to species tree estimation, such as naïve and statistical binning42,43, whose aim is to 

augment phylogenetic signal when inferring species trees using coalescent methods.   

 Here we discuss these various criticisms and concerns in an effort to clarify a host of 

issues raised about coalescent models in phylogenetics.  We also highlight recent empirical 

studies that evaluate the signal in gene trees and explore their implications for the adoption or 

rejection of species tree methods.  We show that concatenation methods can be considered a 

special case of the more general MSC.  As such, the more specific concatenation model is 

expected to yield results that are biased but with a smaller variance (e.g., higher bootstrap 

support) for the estimates of model parameters than the more general MSC -- a perspective that 

helps explain recent trends in observed phylogenomic data sets.  We also suggest that naïve 

binning – a proposal to augment the signal in multilocus data sets by concatenating genes at 
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random into bins – will only work under highly restricted conditions, and that the lower 

performance of coalescent methods versus concatenation methods in those studies reflects an 

undue focus on point estimates and a restricted set of simulation conditions, an undervaluation of 

the variance of those estimates and the often inflated support of concatenation analyses.  Overall 

we find that currently proposed species tree methods represent a promising start to the challenge 

of analyzing phylogenomic data and highlight conceptual and practical challenges for the future. 

Concatenation versus Coalescent Models in Phylogenomics 

The coalescent and concatenation models differ in their treatment of individual gene trees. In the 

coalescent model, which assumes free recombination among genes, the gene trees are treated as 

conditionally independent random variables G ={gi, i = 1, …, k} given the species tree S
40

, where 

k is the number of genes. However, independent gene trees may have the same topology, 

especially when the species tree has long internal branches in coalescent units
44,45

.  Under the 

coalescent model, the likelihood function of the species tree S given the multilocus sequence data 

D = (d1, d2, …, dk) is given by  

L(S | D) = f (D | G,λ)×φ(G | S)dG
G

∫ . (1) 

In (1), f (D | G,λ)  is the probability density function of sequence data D given gene trees G and 

parameters λ in the substitution model, and φ(G | S) is the coalescent distribution function of 

gene trees G given the species tree S. The function f (D | G,λ)  is the traditional likelihood 

function used for building maximum likelihood gene trees. When gene trees G are identical with 

the species tree S (i.e., g1 = g2 = … = gK = S), the coalescent probability function φ(G | S) is 1 for 

G = S and 0 otherwise. Therefore, when all gene trees are identical with the species tree S, the 

likelihood function of the species tree S is reduced to   
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L(S | D)= f (D | S,λ) .           (2) 

As model parameters λ may or may not be linked across genes (i.e., partitions), f (D | S,λ)  in (2) 

is the likelihood function for the concatenation model with or without partitions. Equation (2) 

shows that the concatenation model with or without partitions is a special case of the coalescent 

model.  This result has at least two important implications: (i) while concatenation methods may 

produce inconsistent estimates of species trees under the coalescent model
32

, coalescent methods 

can consistently produce the true species tree under the concatenation model, and (ii) the 

comparison between the coalescent and concatenation methods falls into the general bias-

variance dilemma, i.e., the reduced model (concatenation) in general is biased and has smaller 

variance for the estimates of model parameters
46

.  

 As a reduced model, concatenation has a smaller number of parameters, because all gene 

trees in the concatenation model are treated as the same variable. Thus, the estimates of 

parameters in the concatenation model tend to have a smaller variance. Since small variance 

corresponds to high bootstrap support or posterior probability, overestimation of bootstrap 

support by concatenation methods is a consequence of the fact that it is a reduced model.  

Moreover, ‘two-step’, gene-tree-based coalescent methods – those methods that estimate the 

species tree using separately estimated gene trees
47,48

 (Figure 1) – can in turn result in larger 

variance for their estimates of species trees, because these methods estimate gene trees and the 

species tree separately using summary statistics or a pseudo-likelihood function.  This is the 

same as saying that gene-tree-based coalescent methods may sometimes result in bootstrap 

support that is lower than those coalescent methods using the full coalescent model, such as 

BEST
31

 and *BEAST
49

.  (Indeed, we have observed this empirically for the 30-locus data set 

from birds
50

 analyzed by Liu and Pearl
31

, which yielded a posterior probability of 0.9 when 
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 9 

analyzed by BEST but only ~54% bootstrap support when analyzed by the simpler model in 

STAR
51

). However, the problem of larger variance in gene-tree-based coalescent methods can be 

greatly alleviated by either improving the efficiency of these methods or by increasing the 

number of genes.  Because phylogenomic data often contain hundreds of genes, species tree 

analyses using gene-tree-based coalescent methods have produced highly supported species trees 

for empirical phylogenomic data
15,24,27,28,52

.  In contrast, inconsistency of concatenation tends to 

become severe when there are a large number of genes
32

. Thus, the major concern of 

phylogenomic data analysis is not the high variance of gene-tree-based coalescent methods, but 

rather the inconsistency of concatenation methods due to model misspecification
48

, especially in 

cases where phylogenomic inferences are based on highly supported relationships.   

 In empirical phylogenomic data analyses, concatenation and coalescent methods often 

produce similar relationships for the majority of branches in the estimated trees. As discussed 

above, when the concatenation model applies, we do not expect to encounter highly supported 

relationships that conflict between concatenation and coalescent trees, because with the 

assumption of identical gene trees, the coalescent model is reduced to the concatenation model. 

Thus, highly supported but conflicting relationships in concatenation and coalescent trees, as has 

recently been observed in several phylogenomic data analyses
15,28,53

, indicate either a high 

amount of ILS (due to short internal branches [in coalescent units] in the species tree) that 

mislead the concatenation method
15

, or that the major cause of gene tree variation is not ILS. In 

the latter case, neither concatenation nor coalescent models can adequately explain the 

distribution of heterogeneous gene trees. 

Empirical examples of conflict between coalescent and concatenation methods 

Coalescence versus concatenation in plant phylogenomics 
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To date, very few studies have utilized coalescent methods for inferring plant phylogenies
34,54-56

. 

Of these studies, strongly conflicting relationships involving concatenation versus coalescent 

analyses have recently been demonstrated for key nodes in land plant phylogeny. (When we 

write “strongly” we typically mean supported by a bootstrap value of at least 75 – >90%, 

depending on context).  Despite tremendous effort, relationships between the five main seed 

plant clades–angiosperms, conifers, cycads, Ginkgo, and gnetophytes–have remained uncertain. 

A first broad coalescent analysis of seed plants by Xi et al.
27

 incorporated 305 nuclear genes and 

suggest an explanation for why concatenation methods may result in strong topological 

incongruence, manifested as phylogenetic ‘flip-flops’ between analyses involving different 

subsets of data.  Unlike most previous analyses using concatenation, which have strongly placed 

cycads and Ginkgo as successive sisters to the remainder of extant gymnosperms, coalescent 

results instead strongly identified Ginkgo and cycads as monophyletic. Suspecting that the rate of 

nucleotide substitution might be influencing this difference, Xi et al.
27

 binned sites into fast and 

slow evolving categories and reanalyzed these data.  Coalescent analyses continued to support 

the monophyly of Ginkgo and cycads regardless of rate category, but concatenation did not. 

Instead, fast evolving sites strongly supported the more traditional placement of cycads and 

Ginkgo whereas slow evolving sites supported the placement inferred from coalescent methods. 

This finding raised the hypothesis that rate variation among sites may explain the striking 

topological differences observed in concatenated phylogenomic analyses, reflecting problems 

commonly encountered in, for example, cases of ‘long branch attraction’
57,58

. Furthermore, more 

recent coalescent analyses using expanded taxon sampling and transcriptome data corroborated 

the monophyly of Ginkgo and cycads 
55

. 
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 In a second paper, Xi et al.
28

 further explored this hypothesis by examining a slightly 

larger phylogenomic dataset including 310 nuclear genes, mostly from flowering plants. Here, 

phylogenetic relationships were congruent between concatenation and coalescent methods, 

except for the placement of Amborella, which has long been heralded as the sister to all other 

flowering plants
59,60

.  Here, coalescent analyses consistently and strongly support the less 

traditional placement of Amborella as sister to water lilies across all nucleotide rate partitions. 

By contrast, concatenation showed the same kind of strongly conflicting results that were 

observed in earlier study involving the placement of Ginkgo and cycads: slow evolving sites 

corroborated the results from coalescent analyses and fast evolving sites placed Amborella alone 

as the first lineage of extant plants.  An additional assessment of these fast evolving sites showed 

particularly strong evidence of saturation, suggesting one explanation for these artifacts. In this 

case, it appears that distributing saturated sites among many individual gene trees and analyzing 

each separately as is done by commonly used coalescent methods may be more effective at 

diluting the deleterious effects of such characters. By contrast, when analyzing all such sites 

simultaneously within a single matrix as is done using concatenation, such deleterious effects 

will be exacerbated.  We should note that this question has been revaluated more recently with 

coalescent analyses using expanded taxon sampling and transcriptome data 
55

. This study 

strongly supports the more traditional placement of Amborella alone.  However, one of us (Z.X.) 

has analyzed the nearly 400 transcripts common to both Amborella and water lilies using these 

data. Here again, slow evolving nucleotide and amino acid sites strongly support the placement 

of Amborella and water lilies as monophyletic (unpublished data). 

 Xi et al. investigated this placement of Amborella further with simulations. The first of 

these simulations used the Amborella dataset. Here, they randomly constrained each gene tree to 
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be consistent with one of the alternative placements of Amborella. Branch lengths and 

substitution model parameters were then estimated on each constrained tree from the original 

data. Data sets were then simulated on these trees and the resulting simulated data were binned 

into fast and slow evolving sites. Coalescent analysis of these data reconstructed the constrained 

topologies as expected, regardless of rate category. Surprisingly, however, despite 60-80% of the 

gene trees constrained to the Amborella plus water lilies placement, concatenation of the fast 

evolving sites still resulted in the placement of Amborella and water lilies as successive sisters to 

all angiosperms.  The fact that the concatenated data reconstructs the traditional Amborella alone 

topology, even when the fast evolving sites come from a tree in which Amboralla and water lilies 

are sisters, shows that concatenation of fast evolving sites likely plays a strong role influencing 

the misleading placement of Amborella. 

 Additional simulations
28

 on species trees with both long and short branches suggested 

that when incomplete lineage sorting is high, concatenation methods perform very poorly, 

suggesting that concatenation may strongly be influenced by the shape of the species tree 

topology and its interaction with ILS.  A related follow-up simulation study
29

 suggests that when 

long external and short internal branches occur simultaneously with high ILS, concatenation 

methods can be misled, especially when two of these long branches are sister lineages.  By 

contrast, species tree methods (in this case MP-EST
48

 and STAR
51

) are more robust under these 

circumstances.  This result is particularly relevant because many ancient radiations across the 

Tree of Life suggest this particular pattern of adjacent long and short branches. Because short 

internal branches in the species tree can increase the potential for ILS and gene tree discordance, 

these results indicate that coalescent methods are more likely to infer the correct species tree in 
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cases of rapid, ancient radiations where short internal and long external branches are in close 

phylogenetic proximity. 

Coalescence versus concatenation in mammal phylogenomics 

 Despite recent progress in classifying eutherian mammals into four superorders – 

Afrotheria, Xenarthra, Laurasiatheria and Euarchontoglires -- several key relationships within 

eutherian mammals remain controversial, including the root of Eutheria, and the interordinal 

relationships within Euarchontoglires, Laurasiatheria and Afrotheria
61,62

. To date, however, the 

reconstruction of mammalian phylogeny has relied mostly on concatenation methods, which as 

we indicate above may suffer from systematic bias due to the unrealistic assumption of gene tree 

homogeneity across loci. To empirically address the effect of gene tree heterogeneity on 

estimating deeply diverging phylogenies, Song et al.
63

 took the approach of subsampling loci and 

taxa so as to investigate the robustness of concatenation and coalescent methods to different 

analyses of the same taxa.  Using a data set of 447 nuclear genes for 35 mammalian taxa, Song et 

al. demonstrated that concatenation indeed behaves inconsistently across data sets, as evidenced 

by the conflicting and strongly supported relationships from different subsamples of loci. In 

contrast, coalescent methods were able to estimate a consistent phylogeny for eutherian 

mammals from the same subsets of data, and demonstrated clear positive relationship between 

nodal support values and the number of loci.  In this regard, the study on mammals was 

consistent with predictions of a recent simulation study that showed a correlation between 

number of loci and species tree support for nodes exhibiting high rates of ILS
35

.   

 Several studies 
64

, including the mammal study
15

, have revealed the sometimes striking 

contrast between support values for trees analyzed by concatenation versus coalescent methods, 

with the latter often yielding much lower values even when the tree is largely similar.  It is often 
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 14

the case that a tree that appears well-resolved by concatenation methods is found to be poorly 

resolved using coalescent methods.  So which set of support values better reflects reality?  Such 

results likely reflects the tendency for concatenation methods, especially Bayesian concatenation 

methods, to overestimate credibility values in phylogenetic trees
65,66

.  They may also partly 

reflect the tendency of gene-tree-based coalescent methods to yield lower confidence levels than 

full Bayesian coalescent methods when the number of gene trees is small (see above).  

Differences in the method of bootstrapping may also contribute to these discrepancies; the 

multilocus bootstrap
67

 is generally believed to more accurately capture support in large data sets 

than the simple bootstrap
20

. In the study by Song et al.
15

, the 26 genes that resolved a sample of 

mammalian taxa using concatenation resulted in a poorly resolved tree when analyzed by MP-

EST.  They suggested that, in a coalescent framework, approximately 400 genes would be 

required to resolve the sample of taxa in the particular tree for mammals.  In this case, missing 

data may also play a role, since coalescent methods appear to be more sensitive to missing data 

than concatenation methods
64

.  However, one study68 suggested that species tree methods were 

“remarkably resilient to the effects missing data”. In our view, what sensitivity to missing data 

displayed by species tree methods reflects the true impact of missing data on phylogenetic 

analysis -- an impact that is obscured by analyses employing concatenation.  There are now 

many examples of well resolved phylogenies employing concatenation on highly incomplete 

data sets
55,69,70

.  We believe these examples illustrate the power of concatenation to obscure the 

true support for trees by the collected data (see also
71

). 

Maximizing signal in species tree analysis 

Species tree analysis has moved past the stage of uncritical adoption to evaluation of sampling 

strategies and methods for maximizing phylogenetic signal
33,38,72-75

.  Much of our understanding 
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 15

of the behavior of species tree reconstruction comes from simulation studies, although analyses 

of empirical data have also yielded important insights.  An important rule of thumb that has 

emerged from both simulation and empirical studies is that species trees are only as good as the 

gene trees on which they are built
14,38,64,72,76,77

. This maxim applies both to ‘two-step’ species 

tree methods, in which gene trees are used as input data, as well as to ‘single step’ approaches, 

such as Bayesian methods, in which gene and species trees are estimated simultaneously.  For 

example, several empirical studies on organisms as varied as turtles, mammals, fish and 

flowering plants, have shown that species tree estimation can be misled by biased gene tree 

estimation due to long-branch attraction and base compositional heterogeneity among lineages, a 

manifestation of substitution model non-stationarity
12,14,28

.  Even so, recent work suggests that 

species tree methods, even those in which gene trees are estimated first and separately from the 

species tree, may be less susceptible to classic challenges in phylogenetic analysis, such as long 

branch attraction (Table1)
29

. This lowered susceptibility of species tree methods may be due to 

the fact that a typical gene tree is based on at most a few thousand base pairs, which may be 

small enough such that departures from stationarity may be less visible in the underlying data 

sets.  While it is valid to criticize the ensemble of constituent approaches that comprise gene tree 

and species tree analysis, including gene tree and species tree reconstruction, it is unwarranted to 

criticize species tree methods per se, especially when it is the reconstruction of gene trees that is 

responsible for misestimation
20

.  Thus a number of authors have suggested improving and 

maximizing signal in gene tree estimation as a means of improving species tree estimation as a 

whole.  Such improvements in signal take a variety of forms, including binning of subsets of 

genes, using longer or more informative genomic regions for each locus 
2,15,30,77

, minimizing 

base compositional heterogeneity among lineages, and even choosing genes with specific trends 
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in base composition, for example those genes trending towards AT richness in mammals
78

.  In 

this section we evaluate a variety of suggestions for signal enhancement in species tree analysis. 

Naïve and statistical binning 

The naïve binning technique was proposed to improve the support of coalescent estimates of 

species trees by reducing the estimation error of gene trees
43

. This technique concatenates DNA 

sequences across randomly selected genes, regardless of whether the selected genes share the 

same history.  The binned sequences are treated as a “super gene”, and used to estimate “super 

gene trees”. As the binned sequences are longer than the original data, the resulted gene trees are 

often well supported
43

.  However, as shown in Kubatko and Degnan32, binning sequences from 

genes with distinct histories can mislead maximum likelihood (ML) concatenation methods, 

which consistently produce the wrong estimate of the species tree under broad conditions. This 

inconsistency problem may also occur for the “super genes” in the binning technique.  Indeed, 

although the paper title implied that binning yielded a general improvement for phylogenomic 

data (“Naive binning improves phylogenomic analyses”), in the paper the authors were more 

equivocal (“This paper should not be interpreted as recommending the use of naïve binning, but 

instead as an indication of the potential for binning techniques to improve species tree 

estimation”; p. 2284).  From first principles we know that, for the case of 4-taxon aous species 

tree (see Figure 3f in Kubatko and Degnan32) when the bin size (BS) is large, all of the 

concatenated genes (i.e., super genes) will have the same ML tree, a tree that is incongruent with 

the species tree. These biased super gene trees can significantly mislead the MP-EST estimate of 

the species tree.  Even when the bin size is small (10-15 genes), binning sequences can increase 

the probability of estimating gene trees that disagree with the species tree. When this probability 
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is greater than a threshold, it will mislead the MP-EST and other methods to consistently produce 

the wrong estimate of the species tree. 

 To demonstrate these phenomena, we simulated gene trees from a 5-taxon species tree 

(labeled species A–E, Figure 2a) under the coalescent model using the function sim.coaltree.sp 

in the R package Phybase
79

. Because the MP-EST method assumes that gene trees are rooted 

trees, species E is used as the outgroup for rooting the estimated gene trees. To reduce the 

rooting error, we intentionally set a small population size θ = 0.01 and a long internal branch 

(length = 0.08) between the ingroup species (A-D) and the outgroup species E. Under these 

conditions, the ingroup species (A-D) almost always form a monophyletic group in the simulated 

gene trees. In addition, the population size parameter θ is set to 0.1 for other ancestral 

populations in the species tree. This species tree is in the anomaly zone, because the internal 

branches for species A, B, C, and D are very short (0.005/0.1 = 0.05 in coalescent unit), and the 

most probable gene tree (PT) does not match the species tree
80

.  Although species trees in the 

anomaly zone might be considered unrealistic81, recent empirical examples seem to suggest 

otherwise53.  DNA sequences of length 1000 bp were generated from the simulated gene trees 

using SeqGen
82

 with the Jukes-Cantor (JC69) model
83

. The simulated DNA sequences were 

binned at random to form super genes.  The bin size was set to 10, 20, 30, 40, and 50 genes, 

respectively. A ML super gene tree was estimated for each bin by PhyML
84

. The estimated super 

gene trees were then used to estimate species trees using the MP-EST method. Each simulation 

was repeated 100 times.  

 When the bin size is one (i.e., no binning was performed), the probabilities of the 

estimated gene trees are similar to the true probabilities of gene trees generated from the species 

tree (Figure 2b).  However, the probability of the most probable gene tree (PT) significantly 
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increases as the bin size increases (Figure 2b). When the bin size is 30, almost half of the 

estimated super gene trees are PT, which is incongruent with the species tree (Figure 2b). It is 

clear from this exercise that binning sequences from genes with distinct histories can bias the 

distribution of the estimated gene trees, with a high probability of producing the tree that is 

incongruent with the species tree.  

 Without binning (BS = 1), the MP-EST method can consistently estimate the correct 

species tree as the number of genes increases (Figure 3a). The proportion of trials yielding the 

correct species tree appears to increase as the number of genes increases, and reach 1.0 when the 

number of genes is 1000. When the bin size is five, the probabilities of estimating the correct 

species tree are greater than those without binning.  This result indicates that when the bin size is 

five, binning can improve the performance of MP-EST in estimating species trees.  However, 

when the bin size is greater than or equal to 10, the probability of estimating the correct species 

tree is in general less than the probability without binning (Figure 3b). Moreover, the probability 

of estimating the correct species tree appears to decrease as the number of bins (i.e., the number 

of super genes) increases (Figure 3b). For bin sizes of 30, 40, and 50, the probability of yielding 

the correct species tree decreases to zero when the number of bins reaches 80 (Figure 3b).  

Meanwhile, when the bin size is greater than 10, the MP-EST tree based on the binned genes 

appears to consistently estimate the wrong tree as the number of bins increases (Figure 3c). 

Interestingly, for the simulation parameters studied here, for a bin size of 10, the probability of 

the correct tree stabilizes around 0.6, while the probability of an incorrect tree stabilizes around 

0.4.  Although this result suggests that when the bin size is less than 10, the binning technique 

can be beneficial for improving the performance of the MP-EST method in estimating species 

tree, additional simulation results suggest that this may not always be the case (not shown).  
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Further research on naïve binning is needed.  We can certainly state that when the bin size is 

greater than 10, binning sequences across genes with distinct histories can significantly bias the 

distribution of estimated gene trees, and result in inconsistent estimates of species trees.  

 Ideally, the loci should be concatenated if no or only a few recombination events 

occurred between those loci.  A model based on biology would suggest that binning should be 

based on loci that are closely linked in genomes, such as often occurs in transcriptomes, because 

the chance of recombination is positively related to the physical distance between two loci.   

Recently, Mirarab et al
42

 proposed a statistical binning technique which attempts to bin loci with 

the same gene tree.  In this approach, loci are binned when there are no strongly supported 

topological conflicts among the estimated gene trees of those loci, for example when the gene 

trees do not conflict on branches with > 75% bootstrap support.  However, the statistical 

properties of statistical binning are not yet fully explored.  As discussed in the previous section, 

the assumption of free recombination between genes and no recombination within genes plays a 

key role in the coalescent model.  Loci are treated as conditionally independent, due to the 

assumption of free recombination between genes. Two loci may have the same gene tree even 

though they are conditionally independent. This may occur, for example, when the species tree 

has long internal branches (in coalescent units). When the genes have the same history, binning 

their sequences can improve gene tree estimation, but it also reduces the sample size of 

independent genes. Thus, from first principles we can state that binning sequences from genes 

with the same history may not necessarily improve species tree estimation.  In addition, two trees 

with no strongly supported conflicts do not necessarily indicate that they are topologically 

identical with each other. As we discussed for the naïve binning, combining loci with different 

histories may seriously bias the distribution of the estimated gene trees, which in turn will 
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mislead species tree estimation. In conclusion, further studies are needed to evaluate the 

performance of statistical binning.  

Information content of genes for species tree reconstruction 

Despite the recent arrival of genome-scale Bayesian phylogenetic methods for concatenation 85, 

the Bayesian or approximate Bayesian coalescent model cannot presently be applied to 

phylogenomic data due to excessive computational burden
31,49,86

. Alternative gene-tree 

approaches, including MP-EST
48

, GLASS
87

, Maximum Tree
48

, STAR
51

, STEM
88

, STELLS89, 

ASTRAL
90

 and STEAC
51

, build species trees from estimated gene trees. These approaches have 

computational advantages that allow them to be used for phylogenomic data analyses
76

 and novel 

molecular markers such as ultraconserved elements2,23.  Additionally, recent species tree 

methods utilizing information from SNPs91,92 and haplotypes93 may be scalable to large data 

sets.  However, the tree estimates given by gene-tree-based approaches often suffer the problem 

of big variance (i.e., low bootstrap support). As these approaches employ bootstrap techniques to 

account for errors in estimating gene trees, large estimation error for gene trees can greatly lower 

the bootstrap support of the species trees estimated by those approaches (Huang et al 2010). 

Moreover, these approaches estimate species trees based only on the topologies of gene trees, 

ignoring the branch length information, which further reduces the efficiency of those approaches. 

The simulation study by Huang et al (2010) suggests that high amount of gene tree estimation 

error may be the major cause of low bootstrap support in estimates of species trees using STEM 

(Table 1). It has been suggested by empirical studies that using highly supported gene trees 

(average bootstrap support value > 0.5) can improve bootstrap support of species trees estimated 

by gene-tree-based approaches
15,21

, and adding poorly supported gene trees (i.e., weak genes) 
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does not contribute more information regarding the phylogeny of species. We evaluated this 

hypothesis through a simple simulation analysis. 

 To evaluate the effect of weak genes on the performance of gene-tree-based approaches 

in estimating species trees, DNA sequences were simulated from the true species tree 

((((A:0.002, B:0.02):0.002, (C:0.002, D:0.002):0.002):0.002, E:0.006):0.01, F:0.016) with θ = 

0.008. The population size parameter θ is constant across branches of the species tree. 

Specifically, gene trees were generated from the species tree under the MSC, again using 

Phybase
79

. DNA sequences were generated from the simulated gene trees under the JC69 model 

using SeqGen
82

 with the Jukes-Cantor model
83

. We generated 1000 base pairs for ‘strong’ genes, 

and 100 base pairs for ‘weak’ genes.  The average bootstrap support values of strong genes range 

primarily from 70% (first quantile) to 91.75% (3
rd

 quantile) with median = 81.83% (Figure 4a), 

whereas the average bootstrap support values for 100 base pair genes are mostly < 50% (Figure 

4a). Thus we selected 100 base pair genes with bootstrap values < 50% as weak genes. Species 

trees were reconstructed from 10, 20, up to 90 (in increments of 10) estimated gene trees for 

strong genes using MP-EST. Each simulation was repeated 100 times. The proportion of trials 

estimating the true species tree was 0.33 for 30 strong genes, and it increased to 1 when the 

number of strong genes was 40 (Figure 4b). However, when adding weak genes to the set of 30 

strong genes, the proportion of estimating the true species tree increased slowly to 0.63 and then 

decreased to 0.50 (Figure 4b).  This result suggests that adding weak genes may not contribute 

more information to an otherwise strong data set when estimating species trees. When adding 

weak genes, the distribution of estimated gene trees becomes flat, and the coalescent signal 

contained in the estimated gene trees is significantly reduced. Thus adding weak genes may 

Page 21 of 42

http://www.nyas.org/forthcoming

Annals of the New York Academy of Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



unedited m
anuscript

 22

actually reduce the performance of species tree estimation methods, negating the old adage that 

“more data is always better”. 

Transcriptomes, base composition, and location-aware concatenation 

Transcriptomes have formed an important type of data lending itself to species tree estimation.  

Because of their ease of alignment and characterization, transcriptomes will continue to be an 

important data type for many kinds of phylogenetic analysis.  However, because transcriptomes 

consist solely of coding regions, they are potential targets of natural selection
94

.  Indeed, 

genome-wide phylogenetic comparisons in primates have shown that the rate of ILS in coding 

regions is lower than that in non-coding regions
94

.  This higher incidence of reciprocal 

monophyly and lower incidence of ILS in coding regions is likely driven by recurrent bouts of 

positive selection on coding regions, with surrounding noncoding regions adhering to patterns 

more consistent with neutrality.  Whether or not this type of departure from the neutral 

coalescent will be problematic for species tree analysis is unclear, because by lowering the rate 

of deep coalescence, natural selection could help eliminate some of the discordance that is 

known to decrease phylogenetic signal in species tree analysis
47,95

.  However, recent genome-

wide analyses of avian phylogeny suggest substantial convergence in protein coding regions, 

resulting in species trees that are clearly incongruent with noncoding genomic partitions16. 

 Transcriptomes are also characterized by strong base compositional biases, and it is well 

known that the third positions of nuclear genes can evolve rapidly and become misleading over 

long time scales.  Departures from base compositional stationarity in phylogenomic data sets 

have long been known to cause serious problems for phylogenetic analysis, potentially linking 

together lineages that are unrelated but share similar base compositions
16,96-98

.  Variation in base 

composition among taxa is known for both transcriptome data and for whole-genome data.  
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Additionally, it is well known that different subgenomes can possess different base 

compositions; for example, coding regions are generally more GC-rich than noncoding regions.  

Examination of variation in base composition among lineages and genes as well as saturation 

patterns in different data partitions has shed some light on optimal choice of marker for species 

tree analyses. For example, Chiari et al.
14

 showed that species tree analysis of turtle relationships 

changed dramatically depending on whether amino acid sequence or nucleotide sequence data 

were used to build gene trees, with amino acid data sets providing more congruent results.  

Betancur-R et al.
12

 showed convincingly that substantial apparent gene tree heterogeneity in fish 

data sets arises from mis-estimation of gene trees most likely due to base compositional 

heterogeneity among lineages.  They found that choosing sets of genes with base compositional 

homogeneity among lineages substantially reduced the apparent evidence for gene tree 

heterogeneity and ILS.  While we view this result as significant, we suggest that it does not 

invalidate the use of species tree methods or necessarily support supermatrix approaches, 

because species tree methods do not require gene tree heterogeneity to work well.  A final 

example in which base composition plays a role in species tree reconstruction was provided by 

Romiguier et al.
78

, who found that the gene trees in mammals based on GC-rich coding regions 

were more heterogeneous than those with an AT-bias.  Moreover, the species tree suggested by 

AT-rich data sets favored the Afrotheria hypothesis, with Afrotheria as the first branch within 

placental mammals, whereas those based on the more heterogeneous GC-rich data sets favored 

the Atlantogenata rooting, in which Xenartha and Afrotheria are sister groups.  These authors 

suggested that the way forward was not so much to account for ILS using novel phylogenetic 

methods as to reduce its incidence by using particular sets of markers.  Again, while we do not 

dispute the observation of lower gene tree heterogeneity in AT-rich markers, this does not mean 
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that supermatrix approaches are necessarily favored.  So long as different genes are conditionally 

independent from one another due to recombination, we suggest that species tree analysis will 

still accumulate phylogenomic signal very differently, and we hypothesize more accurately, than 

will concatenation approaches.  Species tree approaches are not invalidated by the absence of 

ILS; rather they represent a fundamental recognition of the importance of stochasticity from gene 

to gene that is unaccounted for by concatenation methods, even when ILS is low or absent. 

 An important issue in the ongoing discussion of concatenation versus coalescent methods 

is whether the location-aware concatenation of exons in transcriptome data is reasonable or 

whether it violates the MSC25.  Location-aware concatenation occurs when adjacent exons or 

genomic regions are concatenated to one another. This type of concatenation has biological 

realism in so far as adjacent regions of the genome are known to be correlated in their historical 

ancestry, with stretches of chromosomes yielding information suggesting similarity in gene trees 

as one moves along the chromosome.  On the one hand, transcriptome data has been shown in 

multiple studies to yield phylogenetic trees produced by MSC models that are either congruent 

with previous results or provide novel hypotheses that are plausible (e.g., turtles, plants).  On the 

other hand, transcriptome data is indeed ‘concatenated’ by cells when converting pre-mRNAs 

into the mature mRNAs that are often used in phylogenomic studies.  A key difference between 

the location-aware concatenation performed by cells and the naïve binning recommended by 

Bayzid and Warnow
43

 is that, in location-aware concatenation, exons that are adjacent to one 

another in the genome are concatenated, whereas binning approaches are agnostic as to the 

location of binned genes in the genome.  Still, exons that are concatenated by cells can still occur 

at varying distances from one another in the genome, and may experience levels of 

recombination in their history that rivals those experienced by loci located at a distance in the 
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genome.  However, as Lanier and Knowles
39

 point out, recombination will only be a challenge 

on extremely short internal branches of the species tree; recombination occurring on long 

branches will involve sequences closely related within species and will provide discordant signal 

primarily when taking place in common ancestral species.  The empirical effects of varying 

genomic distance on the variety of observed gene trees need to be studied in more detail.  Using 

a variety of statistical methods, several studies, particularly in primates and rodents, have found a 

patchwork of gene tree signals in chunks when moving along a chromosome
99-101

.  Methods for 

delimiting genomic segments that display consistency of phylogenetic signal are emerging, and 

these may prove extremely useful for delimiting loci for species tree analysis and minimizing the 

negative effects of recombination.  In general, however, when faced with insufficient signal in a 

species tree analysis, we advocate increasing the size of phylogenomic data sets2, rather than 

pseudoconcatenation or naïve binning as a means of augmenting signal.  Despite the plethora of 

large-scale phylogenomic studies, empiricists have not yet exhausted phylogenetic information, 

and until then, data collection, rather than binning uninformed by genomic context, should be the 

method of choice for data augmentation. 

 

Computational trade-offs in species tree analysis 

In addition to concerns about marker choice and the statistical properties of species tree 

estimation methods, another major concern is computational cost. When phylogenomic data 

include thousands of genes, the total length of the concatenated sequences will begin to explode, 

resulting in an extremely high computation burden when using concatenation methods.  For such 

data sets, it is practically impossible to perform bootstrap concatenation analyses (with just 100 

replicates), or model selection analysis for choosing the best substitution model for the data.  For 

Page 25 of 42

http://www.nyas.org/forthcoming

Annals of the New York Academy of Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



unedited m
anuscript

 26

some cases, it is even challenging to perform a single maximum likelihood analysis for the 

concatenated sequences. Recent analyses of genome-scale data have been unable to complete 

computation for concatenated date sets, and phylogenetic inferences are often made in the 

absence of analyses that have reached convergence or have searched tree space substantively 

(e.g., 
16,102

).  Recent advances in computer architecture of phylogenetic analyses may help 

alleviate the challenges of analyzing genome-scale supermatrices
103

.  On the other hand, 

Bayesian coalescent models
31,49

 have the same computational issues as concatenated analyses 

when the sequence data involve hundreds of genes. Simpler coalescent methods such as MP-

EST, STAR, and STEAC rely on estimated gene trees to infer species trees, and their 

computational costs are manageable, even for thousands of genes and species. Of course, as a 

price for computational efficiency, gene-tree-based methods suffer low statistical efficiency, in 

the sense that they often require more loci to produce a highly resolved tree. In practice, it is 

extremely difficult to estimate the sample size for phylogenetic methods such that they can 

achieve reasonable bootstrap support for their estimates of the species trees. Clearly the 

landscape of phylogenetic methods for genome-scale data, whether for supermatrices or unlinked 

loci, is rapidly changing. 

 

Conclusion 

Phylogenetic analysis of genome-scale data inevitably invites the use of methods that 

acknowledge the stochasticity of gene histories, and the MSC provides a robust framework for 

incorporating the information in this stochasticity.  Yet newer methods for analyzing genome-

scale data, relying on supertrees
104

 or alignment graphs
105

, will likely yield further insights.  The 

justification for species tree methods lies not in the ubiquity of gene tree heterogeneity in 
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empirical data sets, although this heterogeneity has certainly spurred the advent of such methods. 

Rather, the justification lies in their acknowledgement of fundamental genetic processes inherent 

in all organisms, including recombination along the chromosome, which renders gene histories 

independent of one another, conditional on the phylogeny, and genetic drift, which generates 

stochasticity in gene tree topologies and branch lengths.  Thus, even when all gene trees are 

topologically similar, species tree methods will yield results differing from concatenation 

methods, if not in phylogenetic topology then often in phylogenetic support, because species tree 

methods better model the accumulation of signal that is accrued with increasingly large data sets.  

Different methods of species tree inference incorporate different amounts of detail of the 

multispecies coalescent process, and there is a trade-off between model accuracy and 

computational burden.  For now, ‘two-stage’ species tree methods, in which estimated gene trees 

are used as input data, are useful in so far as they can analyze large-scale genome-wide data sets 

with ease (Figure 1).  But more complex and computationally efficient models are sorely 

needed11.  Although concatenation and species tree approaches often yield similar estimates of 

phylogeny, an increasing number of examples of strong conflict between concatenation and 

coalescent analyses shows that the conditions for conflict among methods occur in empirical 

data. Additionally, concatenation methods appear more sensitive to classic phylogenetic 

challenges such as long-branch attraction and rate variation among lineages than are gene-by-

gene species tree analyses. Some of the differences in behavior between concatenation and 

species tree methods can be understood as manifestations of the classic bias-variance problem in 

statistics, because concatenation is a special case of the more general model used by species tree 

methods, and therefore can exhibit low variance (such as high tree support) despite being more 

biased than species tree approaches.  Further studies aimed at understanding the connections 
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between concatenation and species tree methods and the types of data that maximize signal under 

the multispecies coalescent model will allow phylogenetics to take full advantage of the flood of 

data in the genomics era. 
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Figure legends 

Figure 1: Schematic of the concatenation and coalescent paradigms in phylogenetics.  At the top 

is depicted a multilocus data set consisting of five species (A – E) and four genes (1 – 4).  On the 

left is indicated the classic supermatrix approach, in which all genes are concatenated to produce 

a single ‘supergene’ which is then subjected to phylogenetic analysis by classical or updated 

traditional algorithms such as RAxML109, ExaBayes103 or MrBayes110. Although the resulting 

tree at lower left is in truth a gene tree, it is often called a species tree or phylogeny because it is 

the result of analysis of a complete data set.  In the center is depicted a class of species tree 

(coalescent) methods in which both gene trees and species trees are estimated concurrently 

according to multilocus sequence data, priors and a multispecies coalesent likelihood model. 

Examples of algorithms estimating species trees in this way include *BEAST49 and BEST111. On 

the right is depicted ‘two-step’ species tree methods, in which gene trees are first estimated using 

the classical concatenation paradigm, and then used as input data to estimate a species tree using 

algorithms such as MP-EST
48

, STAR
51

, STEM
88

, NJst112, STELLS89, or ASTRAL
90

.  The 

methods depicted typically used sets of loci each consisting of linked DNA sites2.  Yet other 

species tree methods such as SNAPP91 use unlinked SNPs rather than linked sites, and require 

different statistical models. 

 

Figure 2.  Inconsistency of the binning technique. a) the species tree used for simulating gene 

trees. In this species tree, ((((A:0.01, B:0.01):0.005, C:0.015):0.005, D:0.02):0.08, E:0.1), species 

E is used as the outgroup. To reduce the rooting error, we set a small population size θ = 0.01 

and a long internal branch (length = 0.08) between ingroup species A, B, C, and D and the 

outgroup species E. The population size parameter θ = 0.1 for other ancestral populations in the 

Page 35 of 42

http://www.nyas.org/forthcoming

Annals of the New York Academy of Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



unedited m
anuscript

 36

species tree. b) The probabilities of two estimated gene trees for binned genes. We consider only 

two trees, the matching tree (MT) and the most probable tree (PT). The bars at 0 represent the 

true (coalescent) probabilities of MT and PT generated from the species tree under the coalescent 

model.  

 

Figure 3.  The probability of estimating the wrong and correct species trees without binning. A) 

In these simulation parameters, bin sizes of 0 (no binning) or 5 converge on the correct tree. B) 

For bin size (BS) 10, the probability of estimating the correct tree is stable around 0.6 as the 

number of bins increases. C) In contrast, the probabilities of estimating the wrong species tree 

for BS = 20, 30, 40, 50 increase to 1 as the number of bins increases.  

 

Figure 4. The effect of non-informative genes on the performance of gene-tree-based approaches 

in estimating species trees. DNA sequence data were simulated from the true species tree. The 

sequences of 1000 base pairs were generated for strong genes, while 100 base pairs were 

generated for weak genes. a) the species tree used in the simulation.  b) the boxplot of the 

average bootstrap values for weak and strong genes. c) the effect of different numbers of strong 

and weak genes on the performance of MP-EST in estimating species trees.  See text for further 

explanation. 
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Table 1. Studies evaluating the robustness of species tree phylogenetic methods to 

various genetic forces and sampling schemes. 

Topic 

(Reference number) 

Conclusions/comments* 

General violation of 

multispecies coalescent 

model (106) 

Claims the majority of multilocus sequence datasets are a 

poor fit to the multispecies coalescent model, although much 

of the violation stems from fit of substitution model or 

unknown sources on a minority of genes. 

Gene flow (74,107) • The coalescent method is robust to low levels of gene 

flow  

• Concatenation performs poorly relative to the 

coalescent methods in the presence of gene flow.  

• Gene flow can lead to overestimation of population 

sizes and underestimation of species divergence times in 

species trees. 

 

Sampling/mutation 

(33,75,95) 
• Increased sampling of individuals per species can 

significantly improve the estimation of shallow species 

trees. 

• Sampling more individuals does not significantly 

improve accuracy in estimating deep species trees. Adding 

more loci can improve the estimation of deep relationships. 

• Mutational variance is a major source of error in 

estimates of species trees.  

Recombination (39,108) • Recombination has minor effect on species tree 

estimation except on extremely short species trees. 

• The negative effects of recombination can be easily 

overcome by increased sampling of alleles 

Missing data (19,64,68) • Missing data can decrease the support of species tree 

estimates 

• Missing data can significantly affect the accuracy of 

species tree estimation 

• Species tree methods are “remarkably resilient” to 

missing data
68

 

Taxon sampling (15) Compared to concatenation, coalescent methods are more 

robust to poor taxa sampling 

Long-branch attraction 

(29) 

Species tree methods more resilient to the effects of long-

branch attraction than concatenation methods 

Random rooting of gene 

trees (36,37) 

Misrooting of gene trees can mimic the coalescent process 

Other (81) Anomalous gene trees are unlikely to pose a significant 

danger to empirical phylogenetic study in part because 

species trees in the anomaly zone are likely to be rare. 
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*Conclusions of different papers are presented as simplified bullets. In some cases 

conclusions of different papers may conflict, likely do to differences in simulation 

parameters and assumptions. Comments on papers are the opinion of the authors. 
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Figure 2
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