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Abstract: The value of leaf photosynthetic capacity (Vcmax) varies with time and space, but state-
of-the-art terrestrial biosphere models rarely include such Vcmax variability, hindering the accuracy
of carbon cycle estimations on a large scale. In particular, while the European terrestrial ecosystem
is particularly sensitive to climate change, current estimates of gross primary production (GPP) in
Europe are subject to significant uncertainties (2.5 to 8.7 Pg C yr−1). This study applied a process-
based Farquhar GPP model (FGM) to improve GPP estimation by introducing a spatially and
temporally explicit Vcmax derived from the satellite-based leaf chlorophyll content (LCC) on two
scales: across multiple eddy covariance tower sites and on the regional scale. Across the 19 EuroFLUX
sites selected for independent model validation based on 9 plant functional types (PFTs), relative to the
biome-specific Vcmax, the inclusion of the LCC-derived Vcmax improved the model estimates of GPP,
with the coefficient of determination (R2) increased by 23% and the root mean square error (RMSE)
decreased by 25%. Vcmax values are typically parameterized with PFT-specific Vcmax calibrated from
flux tower observations or empirical Vcmax based on the TRY database (which includes 723 data
points derived from Vcmax field measurements). On the regional scale, compared with GPP, using the
LCC-derived Vcmax, the conventional method of fixing Vcmax using the calibrated Vcmax or TRY-based
Vcmax overestimated the annual GPP of Europe by 0.5 to 2.9 Pg C yr−1 or 5 to 31% and overestimated
the interannually increasing GPP trend by 0.007 to 0.01 Pg C yr−2 or 14 to 20%, respectively. The
spatial pattern and interannual change trend of the European GPP estimated by the improved
FGM showed general consistency with the existing studies, while our estimates indicated that the
European terrestrial ecosystem (including part of Russia) had higher carbon assimilation potential
(9.4 Pg C yr−1). Our study highlighted the urgent need to develop spatially and temporally consistent
Vcmax products with a high accuracy so as to reduce uncertainties in global carbon modeling and
improve our understanding of how terrestrial ecosystems respond to climate change.

Keywords: gross primary production; photosynthetic capacity; Europe; land surface greening;
terrestrial biosphere model
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1. Introduction

The terrestrial ecosystem offsets approximately 30.5% of the carbon dioxide (CO2)
released due to anthropogenic activity [1] and plays a prominent role in regulating global
carbon cycling [2]. As a quantitative indicator of the total amount of carbon assimilated via
photosynthesis, terrestrial gross primary production (GPP) serves as the initial driver of the
global carbon cycle [3]. On the continental scale, the terrestrial ecosystems in Europe have
been proven to be ecologically fragile and particularly sensitive to climate change [4–6].
According to long-term-recorded remotely sensed data, the terrestrial ecosystem has demon-
strated widespread greening since the 1980s, especially in the Northern Hemisphere [7].
Modeling studies have suggested that the total GPP values for Europe vary in a wide
range from 2.5 to 8.7 Pg C yr−1 [8–14]. While there are some discrepancies between study
regions (e.g., those including or excluding part of Russia), estimates of European GPP are
subject to significant uncertainties, hindering our understanding of the role of the European
terrestrial ecosystems in mitigating climate change.

Attempts to model GPP on a global scale using remote sensing data fall into three
general categories. The first is empirical approaches based on statistical models or machine
learning. These studies empirically link GPP with the spectral vegetation index [15–17], leaf
area index (LAI) [18], and sun-induced chlorophyll fluorescence (SIF) [19,20]. Some studies
use machine learning methods to estimate local or global GPP [21,22]. The second category
is the widely used light use efficiency (LUE) model [23]. These models assume that GPP
is a product of the fraction of absorbed photosynthetic active radiation (APAR) and LUE
reduced by modifying factors. Examples are BIOMASS [24], CASA [25], C-Fix [8], 3-PG [26],
VPM [27], EC-LUE [28], the P-model [29], and CCW [30] models. The third category is
process-based terrestrial biosphere models (TBMs), such as CENTURY [31], TEM [24],
Biome-BGC [32], BESS [33], BEPS [34], and FGM [35]. Biologically, GPP is a product
of leaf-scale photosynthesis. Thus, GPP is related to both internal and environmental
factors, including rapid leaf-level biochemical reactions, stomatal conductance [36], canopy
structure [37], climatic factors, soil moisture [38], and slower environmental acclimation
processes [39]. However, empirical models, machine learning methods, and LUE models
have a limited ability to simulate the response of GPP to complicated environmental and
internal biological factors due to their inadequate representation of the mechanisms that
regulate the physiological process of photosynthesis.

TBMs have proven to be particularly useful for estimating GPP due to their inclusion
of the biochemical processes of photosynthesis. TBMs commonly include the mechanistic
leaf photosynthesis model developed by Farquhar et al. (1980). To estimate the spatiotem-
poral patterns of GPP on a large scale, TBMs require a range of forcing data, such as
meteorological data, land cover, the leaf area index, the clumping index, and leaf trait
information. Most importantly, the leaf photosynthesis rate simulated by the Farquhar
model is particularly sensitive to the parameterization of leaf photosynthetic capacity at
25 ◦C (Vcmax) (µmol CO2 m−2 s−1) [2,40,41], reflecting the active amount and kinetic activ-
ity of the Rubisco enzyme in leaves. Inadequate constraints on Vcmax lead to substantial
uncertainties in GPP estimation [42]. Traditionally, Vcmax is estimated by measuring the
net photosynthesis rate (An) relative to internal CO2 pressure (Ci) (i.e., An–Ci curve) at
different CO2 concentrations with saturating irradiance or using a modified ‘one-point
method’ [43,44]. Measuring one An–Ci curve can take up to one hour, generating only one
Vcmax value based on a small number of leaf samples. Thus, field measurements of Vcmax
on the leaf scale [45] are laborious, time-consuming, and, most importantly, mismatched
with the footprints (~100 m–450 m) of eddy covariance (EC) flux towers [46].

Due to the lack of spatiotemporal information on Vcmax, the state-of-the-art TBMs gen-
erally assume a constant Vcmax for a specific plant functional type (PFT). More specifically,
PFT-specific Vcmax values are typically parameterized using two types of data: (1) optimal
Vcmax data calibrated from a GPP derived from eddy covariance flux tower measure-
ments [35,47,48]; and (2) empirical Vcmax compiled from field measurements reported
in the literature [49]. However, many studies have proven the existence of variations in
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Vcmax with space and time, even for plants with the same PFT [50–54]. Consequently, the
conventional parameterization methods that fix Vcmax as a PFT-specific constant can lead
to substantial bias in GPP estimations. In addition, previous studies have mostly been
conducted on the global scale, and TBMs with parameters calibrated based on all flux tower
observations worldwide may have limited accuracy on the regional scale, as in Europe.
Thus, European GPP could possibly be improved by including spatially and temporally
explicit Vcmax values combined with a model calibration method based on EC observations
based in Europe alone.

Recent advances in remote sensing have made it possible to derive dynamic Vcmax
information on a global scale [55]. Global Vcmax products are generally estimated based
on the strong correlation between Vcmax and two major biochemistry properties (i.e., the
leaf chlorophyll content (LCC) and leaf nitrogen content) [56], which can be estimated
from remotely sensed hyperspectral land surface reflectance and solar-induced chlorophyll
fluorescence (SIF) data. For example, two Vcmax products are estimated from GOME-2 SIF
data [57] and GOME-2/OCO-2 SIF data [51]. However, the spatial resolution of SIF-derived
Vcmax products is generally too coarse (i.e., 36 km–1◦) for regional studies. In contrast, the
Vcmax products derived from LCC have a higher spatial resolution (i.e., 500 m to 1◦) [58,59].
While some LCC-based Vcmax products have a relatively low update frequency and a short
accumulation time (i.e., less than a decade with a one-month interval) [58], a few LCC-based
Vcmax products provide approximately twenty years of comprehensive Vcmax estimation at
a 500 m spatial resolution and 8-day temporal resolution [59]. Thus, the newly developed
remote sensing Vcmax products provide an opportunity to improve the estimation of GPP
in Europe by including spatial and temporal variations in Vcmax.

While a high value has been placed on the modeling of Vcmax dynamics on a global
scale, the concomitant increase in our understanding of the Vcmax change effect on GPP
has only partially been realized. This brings us to the crux of our study: the quantitative
analysis of uncertainties in GPP using the conventional constant Vcmax parameterization
in TBMs. In this study, we hypothesize that by considering changes in Vcmax, we can
improve the estimation of spatial and temporal variations in GPP. Specifically, we address
the following three scientific questions: (1) How much carbon has been assimilated by the
terrestrial ecosystem in Europe? (2) Can GPP estimation be improved by including the
spatiotemporal dynamics of Vcmax compared with the conventional method of fixing Vcmax
as a PFT-specific constant? (3) How much uncertainty lies in European GPP estimates
that do not consider changes in Vcmax? By answering these questions, our study offers
an improved estimation of the carbon assimilated by the terrestrial ecosystem in Europe
and can help us to better understand the role of the Northern Hemisphere in mitigating
climate change.

2. Materials and Methods
2.1. Study Regions and Flux Towers

The study region covers the mainland of Europe and part of Russia, excluding England
and parts of Siberia. Flux towers provide direct measurements of ecosystem carbon fluxes.
In this study, 40 sites located in Europe (Figure 1) were selected from FLUXNET 2015
(https://fluxnet.org/data/fluxnet2015-dataset/) [60] based on the availability of Vcmax
data. In addition, we screened out EuroFLUX sites with inconsistent profiles of LAI and GPP
derived from eddy covariance data. Given the limited pool of shrubland sites in EuroFLUX,
the SH site from AmeriFLUX was also included, since only one CSH site (i.e., US-KS2) is
available in AmeriFLUX. The land cover types in the study region were extracted from
the MODIS International Geosphere–Biosphere Programme (IGBP) classification product
(Figure 1), which has a spatial resolution of 500 m. The land cover types were grouped
into a total of ten PFTs, including croplands (CRO), closed shrublands (CSH), deciduous
broadleaf forest (DBF), deciduous needleleaf forest (DNF), evergreen broadleaf forest (EBF),
evergreen needleleaf forest (ENF), grasslands (GRA), mixed forest (MF), open shrublands
(OSH), and wetland (WET).

https://fluxnet.org/data/fluxnet2015-dataset/
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Figure 1. Spatial distribution of 40 EuroFLUX sites and land cover classification from MCD12Q1 in
2016 in Europe. Abbreviations: croplands (CRO), closed shrublands (CSH), deciduous broadleaf forest
(DBF), deciduous needleleaf forest (DNF), evergreen broadleaf forest (EBF), evergreen needleleaf
forest (ENF), grasslands (GRA), mixed forest (MF), open shrublands (OSH), and wetland (WET).

2.2. Methods
2.2.1. A Process-Based Farquhar GPP Model (FGM)

We recently developed a large-scale Farquhar GPP model (FGM) based on eddy
covariance data and remote sensing data [35]. The FGM model was initially developed
from a stand-level GPP model based on Song et al. (2009). Derived from the Song et al.
(2009) model, the FGM estimates GPP by integrating the Farquhar leaf-level biochemical
photosynthesis model [40] with a two-leaf radiation interception simulation method. In
the Song et al. (2009) model, GPP is solved based on three complex equations: Fick’s
law, the Farquhar photosynthesis model, and a model for stomatal conductance. This
approach is computationally expensive. To reduce the computational need for large-scale
GPP estimation at a high spatiotemporal resolution, we introduced the optimal stomatal
conductance theory to compute GPP more efficiently with the FGM.

The FGM simulates carbon assimilation using the Farquhar, von Caemmerer, and
Berry (i.e., FvCB) [40] enzyme kinetic model, which couples electron transport and the
Calvin-Benson cycle. The function of the leaf photosynthetic rate takes the minimum of the
Vcmax-limited photosynthesis rate (i.e., Av) and light-limited photosynthesis rate (i.e., Aj).
Some fundamental equations for GPP estimation with the FGM are described here:

An= min
{

Av
Aj

}
(1)

Av =
Vcmax(C i−Γ∗)

Ci+KC(1 + O/K O)
−Rd (2)

Aj =
J(C i−Γ∗)

4.5Ci+10.5Γ∗
−Rd (3)

where An is the net photosynthesis rate; Av is the minimum of the Vcmax-limited photosyn-
thesis rate; Aj is the light-limited photosynthesis rate; Rd is the dark respiration rate; Γ∗ is
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the CO2 compensation point; KC and KO are the Michaelis–Menten constants of Rubisco
for CO2 and O2, respectively; O is the intercellular oxygen partial pressure in the leaves;
and J is the rate of electron transport.

According to the optimal stomatal conductance theory, plants adjust their stomata to
minimize the combined unit costs of transpiration and carbon assimilation [61]. Assuming
the residual conductance parameter g0 equals zero, the ratio of the intercellular CO2
concentration (Ci) to ambient CO2 concentration (Ca) is regulated by the atmospheric vapor
pressure deficit based on optimal stomatal theory [62,63]:

Ci

Ca
≈

g1

g1 +
√

D
(4)

where D is the vapor pressure deficit in kPa, and g1 is an empirical parameter in kPa0.5.
According to its theoretical interpretation, the parameter g1 increases with the marginal
water cost of carbon λ and the CO2 compensation point Γ∗. Thus, species with a high g1
will have a low instantaneous water use efficiency, i.e., a lower ratio of photosynthesis to
the transpiration rate.

The FGM estimates the mean carboxylation capacity of a unit sunlit leaf (Vcmax25_sunlit)
and shaded leaf (Vcmax25_shaded) area with the following models [53,64,65]:

Vcmax25_sunlit =
ΩLVcmax25 (1.0− exp(−kn −Kb(θz)ΩL))

(k n+Kb(θz)ΩL)
/Lsunlit (5)

Vcmax25_shaded =
ΩLVcmax25

Lshaded

[
1.0− exp(−kn)

kn
− 1.0− exp(−kn − (θz)ΩL)

(k n+Kb(θz)ΩL)

]
(6)

where Ω is the clumping index; L is the total LAI; Lsunlit and Lshaded are the LAIs for sunlit
leaves and shaded leaves, respectively; kn is the coefficient of leaf nitrogen allocation; θz is
the solar zenith angle; Kb(θz) is the light extinction coefficient; and Vcmax25 is the maximum
carboxylation rate standardized to 25 ◦C for sunlit leaves. Lsunlit and Lshaded are estimated
using Beer’s law as follows:

Lsunlit =
−e−Kb(θz)ΩL

Kb(θ z)
(7)

Lshaded= L− Lsunlit (8)

In this study, Vcmax represents the maximum carboxylation rates, standardized to
25 ◦C hereafter (i.e., Vcmax25). In the FGM, the temperature effect on Vcmax is modeled
as follows:

Vcmax =
Vcmax25 exp(a1(T 25))
(1 + exp(a2(T − 41))

(9)

where T is air temperature and a1 (0.051) and a2 (0.205) are empirical parameters based on
measurements [65,66].

The canopy total GPP is the sum of the GPP for both the sunlit and the shaded leaves:

GPP = Ansunlit Lsunlit+AnshadeLshade (10)

where Ansunlit and Anshade are the net photosynthesis rate for a unit sunlit leaf area index
and a unit shaded leaf area index, respectively.

Additional details of the theoretical framework, default parameter values for the FGM,
and model calibration method can be found in our previous study [35].
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2.2.2. Model Calibration and Validation Methods

In the original version of the FGM, both g1 and Vcmax were biome-specific and cali-
brated together using the FLUXNET2015 dataset [60]. In this study, because a new parame-
terization method for Vcmax was adopted, we only needed to calibrate the parameter g1 for
various PFTs in the FGM. Here, we randomly split the sites for each PFT at a 1:1 ratio for
independent model calibration and validation (Table 1). We calibrated the parameter g1
using data collected at calibration sites for nine PFTs, and the remaining sites were reserved
for independent validation. For most PFTs, the sites split for calibration covered a wide
spatial distribution and ensured representative EC data for the calibration. Moreover, the
independent validation reduced the number of uncertainties caused by the inclusion of
prior information using reduplicate sites for the calibration and validation. The indepen-
dent model calibration and validation ensured a reliable and objective assessment of the
model’s performance.

Table 1. Sites for model calibration and validation and the calibrated g1 for nine plant functional
types (PFTs).

PFTs g1 Sites for Calibration (Latitude◦, Longitude◦) Sites for Validation (Latitude◦, Longitude◦)

CSH 1 1.14 US-KS2 (28.61, −80.67) [60,67] RU-Vrk (67.05, 62.94)

CRO 10

IT-BCi (40.52, 14.96) [68]
IT-Cas (45.07, 8.72)

DE-Seh (50.87, 6.45) [69]
DE-Geb (51.10, 10.91) [70]

FR-Gri (48.84, 1.95) [71]
BE-Lon (50.55, 4.75) [72]
DE-Kli (50.89, 13.52) [73]

DBF 1.66
IT-Col (41.85, 13.59) [74]
FR-Fon (48.48, 2.78) [75]

DE-Lnf (51.33, 10.37) [70]

IT-Ro1 (42.41, 11.93) [76]
IT-Ro2 (42.39, 11.92) [77]
DE-Hai (51.08, 10.45) [78]

ENF 0.62

IT-Ren (46.59, 11.43) [79]
CZ-BK1 (49.50, 18.54) [80]
NL-Loo (52.17, 5.74) [81]
RU-Fyo (56.46, 32.92) [82]

IT-Lav (45.96, 11.28) [83]
CH-Dav (46.82, 9.86) [84]

DE-Obe (50.79, 13.72)
DE-Tha (50.96, 13.57) [85]

EBF 0.62 FR-Pue (43.74, 3.60) [86] IT-Cpz (41.71, 12.38) [87]

GRA 1.14

IT-Tor (45.84, 7.58) [88]
CH-Cha (47.21, 8.41) [89]
CH-Oe1 (47.29, 7.73) [90]

CZ-BK2 (49.49, 18.54)

IT-MBo (46.01, 11.05) [91]
CH-Fru (47.12, 8.54) [92]
DE-Gri (50.95, 13.51) [73]

MF 0.62 CH-Lae (47.48, 8.36) [93]
BE-Bra (51.03, 6.0) [94] BE-Vie (50.30, 6.0) [95]

OSH 10 ES-LgS in 2008 (36.93, −2.75) [96] ES-Lgs in 2007 (36.93, −2.75) [96]

WET 0.62
CZ-wet (49.02, 14.77) [97]

DE-Spw (51.89, 14.03)
DE-Zrk (53.88, 12.89) [98]

DE-SfN (47.81, 11.33) [99]
DE-Akm (53.87, 13.68)

1 Abbreviations: closed shrublands (CSH), croplands (CRO), deciduous broadleaf forest (DBF), evergreen
needleleaf forest (ENF), evergreen broadleaf forest (EBF), grasslands (GRA), mixed forest (MF), open shrub-
lands (OSH), and wetland (WET). Site locations are shown in Figure 1. Please refer to the official website
(https://fluxnet.org/sites/site-list-and-pages/, accessed on 19 February 2023) for more detailed descriptions.

Given that only one OSH site (i.e., ES-Lgs) is available in Europe, the flux data for
ES-Lgs were separated by year for the model calibration and validation, respectively. When
calibrating the values of g1 for different PFTs, Vcmax was set to the seasonal dynamics
derived from the LCC. Table 1 lists the results of the calibrated g1 values for different
PFTs. There are no flux towers for deciduous needleleaf forests (DNF) in Europe. Thus, we
adopted the default values of g1 for DNF [35].

https://fluxnet.org/sites/site-list-and-pages/
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2.2.3. Simulation Experiments

Four simulation scenarios were designed depending on the types of Vcmax used in
the FGM. First, we defined a reference setup that included changes in all the factors (i.e.,
simulation “All”) to drive the FGM in a straightforward manner. In the “All” simulation, the
FGM was operated with the spatially and temporally explicit Vcmax derived from the LCC
in a 500 m grid cell and 8-day temporal interval from 2001 to 2016 (Table 2). By considering
the spatial and temporal changes in Vcmax, the European GPP for the contemporary climate
was estimated based on the “All” simulations.

While the other input data were kept fixed for all the runs, three other simulation
scenarios (Table 2) were designed with different types of photosynthetic capacity (PC)
parameterization methods, as follows: (a) In simulation “PC1”, the FGM was operated
with 500 m, 8-day Vcmax data derived from the LCC in 2001 by considering spatial and
seasonal changes in Vcmax, neglecting the interannual variations in Vcmax from 2001 to 2016.
(b) In simulation “PC2”, the FGM was parameterized with PFT-specific Vcmax constants
retrieved from flux tower observations. This typical Vcmax parameterization method is
widely adopted for TBMs. (c) In simulation “PC3”, the FGM was parameterized with
PFT-specific Vcmax constants provided by the TRY database (which includes 723 data points
of Vcmax field measurements) [49]. Kattge et al. (2009) compiled data on qualitative traits,
climate, and soil to subdivide terrestrial vegetation into PFTs and set Vcmax to different
empirical values for different PFTs.

We then compared the simulations “PC1”, “PC2”, and “PC3” with the reference
to quantify the effects of the changed photosynthesis capacity on the magnitude and
spatial pattern of, as well as the temporal variation in, GPP. Thus, the simulation difference
between “All” and “PC1” (i.e., “All”−“PC1”) represents the impacts of interannual changes
in Vcmax on GPP. The simulation difference between “All” and “PC2” (i.e., “All”−“PC2”)
or “PC3” (i.e., “All”–“PC3”) represents the uncertainties regarding GPP using two typical
parameterization methods by fixing Vcmax as a PFT-specific constant.

Table 2. Scenario designs used to quantify the effects of changes in photosynthesis capacity (PC) on
GPP based on the FGM. The symbol ‘4’ indicates that the input variable changes over time, while
the symbol ‘N’ indicates that the seasonality of Vcmax on a large scale is included. The symbol ‘�’
indicates that the input variable is fixed at a biome-specific constant.

Simulation All
(LCC-Derived Vcmax)

PC1
(LCC-Derived Vcmax)

PC2
(PFT-Specific Vcmax)

PC3
(PFT-Specific Vcmax)

LULC 4 4 4 4
LAI 4 4 4 4
Ω 4 4 4 4

Vcmax
4

(8-day, 2001 to 2016)
N

(8-day, 2001)

�
(Optimal constants
retrieved from eddy

covariance data)

�
(Empirical constants based

on TRY 1 database)

DSR 4 4 4 4
Ta 4 4 4 4
RH 4 4 4 4
CO2 4 4 4 4

1 See Kattge et al. (2009).

2.2.4. Data Analysis Methods

(1) Model performance evaluation during the calibration process

We conducted Monte Carlo simulations to calibrate parameter g1 and Vcmax for each
biome. The optimal values of g1 for different biomes were set as driving parameters for
the FGM, while the optimal values of Vcmax for different biomes were only used for the
quantification of the Vcmax change effect on GPP. The Monte Carlo simulations identified
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optimal parameters when the simulated data reached the strongest agreement with the
observed data using a weighted R2 (wR2) as a performance indicator [30,100]:

wR2 =

{
|b|R2, b < 1
|b|−1R2, b ≥ 1

(11)

where b and R2 are the slope and coefficient of determination for the regression of the
modeled GPP and GPP estimates derived from eddy covariance data (EC-GPP) when the
intercept is forced to zero, respectively [101]. A coefficient of determination (R2) equal to
one and b equal to one (wR2 = 1) indicate a perfect model performance. The range of R2

is 0 to 1, which describes the proportion of the observed dispersion that is explained by
the prediction.

(2) Quantification of the accuracy of the FGM GPP

To quantify the accuracy of the FGM GPP directly, first, we compared the simulated
GPP with the EC-GPP collected during the daytime at the 19 validation sites. The R2 and
root mean square error (RMSE) were estimated using the regression lines between the
modeled GPP and EC-GPP to evaluate the FGM model performance.

Second, we quantified the accuracy of the spatial pattern of European GPP predicted
by the FGM. The multi-year mean of the European vegetation photosynthesis rate was
calculated based on different GPP products and the remotely sensed sun-induced chloro-
phyll fluorescence (SIF) data for the same study area. The results of the multi-year means
of the annual European GPP and SIF data with coarse spatial resolutions were resampled
to the target spatial resolution of 500 m by nearest neighbor interpolation. We calculated
the spatial correlation matrix between the different GPP products and the SIF data. The
correlation matrix provides the correlation coefficients between each combination of two
inputs using Person’s correlation (r) metric as an indicator. It is calculated as:

rX,Y =
∑n

i=1
(
Xi − X

)(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi − Y

)2
(12)

where n is the number of vegetated pixels in the study area, i is the grid cell index, Xi is the
estimates of GPP based on the FGM, and Yi is the estimates of GPP based on other GPP
products or the SIF data.

Third, we quantified the accuracy of the interannual changes in the FGM GPP. We
calculated the annual GPP of Europe by accumulating 8-day GPP predictions with a yearly
temporal resolution from 2001 to 2016 based on the FGM and other GPP products. During
the study period, the annual GPP of Europe predicted by the FGM was evaluated against
other global GPP products using the correlation coefficient r and interannual trend b as
two quantitative indicators. Here, r describes the temporal correlation coefficient between
two GPP products based on the regression of interannual GPP dynamics from 2001 to 2016,
in turn based on the FGM GPP and other GPP products, and b is the slope (Pg C yr−2) for
the regression of interannual GPP dynamics (Pg C yr−1) from 2001 to 2016.

(3) Quantification of the Vcmax change effects on GPP

On a large scale, we quantify the Vcmax change effect on GPP by measuring the
magnitude in percent as the mean absolute difference between the pixel-based means of
the simulations, on the one hand, and “PC2” and “PC3”, on the other, relative to the mean
of the reference simulation with “All”, as:

EffectMagnitude =
∑n

i=1
∣∣AR− REF

∣∣
∑n

i=1 REFi
× 100 (13)



Remote Sens. 2023, 15, 1172 9 of 29

where REF is the reference modeling setup using the LCC-derived Vcmax, and AR is an
alternative realization where the Vcmax of the reference setup has changed. The single
overbar denotes the grid-cell-based temporal mean.

2.3. Data
2.3.1. Flux Data

FLUXNET2015 provides gap-filled EC-GPP and corresponding meteorological data on
a daily time scale. We excluded sites without Vcmax data. A total of forty sites in EuroFLUX
and one site in AmeriFLUX were selected from FLUXNET 2015 [60]. Time series LAI data
were extracted from the GLASS LAI product for the pixels in which the flux towers were
located. Because of the potential for uncertainties in both GPP and LAI, we excluded flux
data with inconsistent temporal profiles of EC-GPP and LAI. This screening can reduce
the amount of noise from the spatial mismatch between the remotely sensed data and field
observations. In addition, nighttime flux data were removed. A total of 188 site years
were selected for model calibration and validation purposes. The site-level daily EC-GPP,
shortwave radiation, temperature, VPD, and LAI were used to drive the FGM.

2.3.2. Forcing Datasets for the FGM

Model inputs related to vegetation and environmental forcing data are listed in Table 3.
PFTs on a large scale were determined using MODIS land use and land cover data according
to the MODIS IGBP classification protocol. The FGM uses meteorological data (downward
shortwave radiation (DSR), mean air temperature, and vapor pressure deficit (VPD))
from the Climatic Research Unit-NCEP (CRUNCEP), LAI data from the Global Land
Surface Satellite (GLASS) product, and ambient CO2 concentration from the Mauna Loa
Observatory (MLO) as inputs. We further included the spatially resolved model inputs for
the clumping index (CI) and Vcmax. The CI data were from the global CI map derived from
the MODIS bidirectional reflectance distribution function (BRDF) product [102]. Temporally
and spatially continuous global Vcmax maps were estimated based on the remotely sensed
chlorophyll content [103,104] using Rubisco–chlorophyll relationships between vegetation
types via meta-analyses [105,106]. All data were processed to a target spatial resolution of
500 × 500 m and temporal resolution of 8 days.

Table 3. Vegetation and environmental inputs for the FGM from 2000 to 2016.

Parameter Source Time Temporal
Resolution

Spatial
Resolution Reference

Land use and land cover (LULC) MODIS C6 2001 to 2016 yearly 500 m [107]
Leaf area index (LAI) GLASS V5 2001 to 2016 8-day 500 m [108,109]
Clumping index (Ω) MODIS BRDF-derived 2006 8-day 500 m [102]

Photosynthetic capacity (Vcmax) Chlorophyll content 2001 to 2016 8-day 500 m [59,103–106]
Downward shortwave radiation

(DSR) GLASS V5 2001 to 2016 daily 5 km [110,111]

Air temperature (Ta) CRUNCEP 2001 to 2016 6 h 0.5◦ [112]
Vapor pressure deficit (VPD) CRUNCEP 2001 to 2016 6 h 0.5◦ [112]

Ambient CO2 concentration MLO 2001 to 2016 daily site http://www.esrl.
noaa.gov

2.3.3. Global GPP Products for Intercomparison

To examine the spatial pattern and interannual dynamics of the FGM GPP, a total
of nine popular global GPP products (Table 4) were estimated using different methods,
including one empirical model, four light use efficiency (LUE) models, three machining
learning methods, and one process-based biophysical model. The GOSIF GPP product was
derived from the empirical relationship between GPP and SIF [113,114]. The LUE-based
GPP products included the CCW [30], MOD17 [115], VPM [116], and GLASS [28,117]
products. Three machine-learning-based GPP products, including an artificial neural

http://www.esrl.noaa.gov
http://www.esrl.noaa.gov
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network (ANN), the multivariate adaptive regression splines method (MARS), and the
random forest method (RF), were derived from FLUXCOM GPP [118,119]. In addition, a
global process-based GPP estimation derived from the BEPS was also included [34]. We
evaluated the FGM GPP with the collected GPP products and GOSIF data on a yearly scale.
In addition, we also evaluated the FGM GPP with the GOSIF data, derived from the SIF
soundings of the Orbiting Carbon Observatory-2 (OCO-2), MODIS data, and meteorological
reanalysis data [35,113].

Table 4. Information on nine GPP products for intercomparison.

GPP Spatial
Resolution

Temporal
Resolution Method Time

Period Reference

GOSIF 0.05◦ Annual Empirical model 2001–2016 [113,120]
BEPS 0.073◦ Daily TBM 2001–2016 [34,37,121,122]

GLASS (v6) 500 m Annual LUE model 2001–2016 [28,117]
MODIS (c6) 500 m Annual LUE model 2001–2016 [115]

VPM 500 m Annual LUE model 2001–2016 [116]
CCW 0.05◦ Annual LUE model 2001–2016 [30]

FLUXCOM 0.5◦ Annual Machine Learning 2001–2016 [118,119]

3. Results
3.1. Model Evaluation
3.1.1. Including Dynamic Vcmax Information Improved GPP Estimation at EuroFLUX Sites

We first compared the performance of the FGM between the 19 validation sites (Table 1)
using the LCC-derived dynamic Vcmax (“All”) and TRY-based constant Vcmax (“PC3”).
While “PC3” used only the LAI to describe changes in vegetation status, “All” considered
the variability in both the LAI and the Vcmax in the estimation of GPP. Compared with the
TRY-based Vcmax, the FGM improved the estimation of daily GPP, with the R2 increased
from 0.52 to 0.64 and RMSE decreased by 25%. When forcing the intercept to zero, the
R2 was much higher (0.95 to 0.96). Meanwhile, the scatters between the estimated GPP
and EC-GPP from “All” were closer to the 1:1 line, with smaller biases than “PC3” after
including the LCC-derived Vcmax (Figure 2).
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Figure 2. Validation of model-estimated annual total GPP (g C m−2 yr−1) and GPP derived from
EC data for the 19 EuroFLUX sites selected for independent model validation (Table 1). GPP values
estimated using the FGM were parameterized with (a) LCC-derived Vcmax and (b) TRY-based Vcmax.
The R2 and RMSE were estimated from the regression lines for the modeled GPP and EC-GPP. The
black solid lines and the red solid lines are the regression lines with the intercept forced to 0 or
not, respectively.
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The FGM model generally showed a reasonable performance in predicting daily GPP
compared with in situ GPP measurements across different biomes in Europe (Figures 3 and 4).
Overall, the FGM captured an average of 87.5% of the variation in the EC-GPP from
the validation dataset. We randomly split the forty EuroFLUX sites into 1:1 by biome
to conduct independent model calibration and validation. Our independent validation
indicated that the R2 between the modeled GPP and EC-GPP ranged from 0.79 to 0.93, with
RMSE values ranging from 0.9 to 2.73 g C m−2 d−1 (Figure 3). The independent validation
analysis indicated the strongest model performances for MF and DBF (Figure 3b,f) and less
satisfactory agreement for CRO (Figure 3a). The agricultural sites had a relatively high
RMSE of 2.72 g C m−2 d−1 and a relatively low R2 of 0.79, mainly based on deviations in
amplitude and growing season periods (Figure S1). For example, in the case of DE_Seh, the
FGM predicted lower GPP values than those of EC-GPP (Figure S1). The modeled GPP
values were close to the values of EC-GPP in 2008 but showed lower productivity in the
vegetation phase compared to the values of EC-GPP in 2007 for the same site (e.g., DE_Seh),
probably due to uncertainties in the remote sensing products, such as the LAI (Figure S2).
Despite some discrepancies, the FGM generally simulated the variations in the GPP on the
daily time scale effectively.

3.1.2. FGM GPP Estimations Matched with GOSIF and Other GPP Products

In addition to the flux tower measurements, we further introduced nine global GPP
products and remotely sensed GOSIF data to examine the large-scale pattern and temporal
dynamics of European GPP estimated by the FGM.

The FGM effectively simulated the general pattern of GPP along the temperature
gradient across Europe (Figure 5a). The mean GPP increased from the boreal to temperate
regions and decreased from the temperate regions to the Mediterranean regions. The spatial
pattern of the annual mean GPP modeled by the FGM was well correlated with that of
the other GPP products (r = 0.61–0.8) (Figure 5b–f) and GOSIF data (r = 0.77) (Figure 5g),
although there were regional discrepancies in magnitude.

The multiyear mean of the annual GPP of Europe estimated by the FGM (9.4 Pg C yr−1)
was reasonable compared with the other GPP products (5.9 to 9.2 Pg C yr−1) (Figure 6a).
Moreover, the annual total GPP showed a significant increasing trend from 2001 to 2016
(+0.051 Pg C yr−2, R2 = 0.76, p < 0.01), which was in accordance with the other GPP products
(Figure 6a). The annual total GPP across Europe increased from 9.09 Pg C yr−1 in 2001 to
9.94 Pg C yr−1 in 2016. In addition, the interannual dynamics of the FGM GPP correlated
well with those of the GOSIF GPP, GLASS GPP, VPM GPP, BEPS GPP, and CCW GPP
(Figure 6b). These evaluation results indicated that the FGM GPP was reasonable and could
be used to further quantify the Vcmax change effect on GPP.

3.2. Impacts of Vcmax Change on GPP across Europe
3.2.1. Dynamic Vcmax Information Is Important for the Accurate Estimation of GPP
Seasonality

We further evaluated the seasonal variation in Vcmax using three types of Vcmax data:
(a) Vcmax derived from the LCC (i.e., LCC-derived Vcmax); (b) Vcmax retrieved by the model
calibration method (i.e., Calibrated Vcmax); and (c) Vcmax based on the TRY database (i.e.,
TRY-based Vcmax) (Figure 7). In comparison with the calibrated Vcmax, the LCC-derived
Vcmax showed major differences, without a consistent bias in any one direction. In spring
and autumn, the LCC-derived Vcmax reduced the overestimation of Vcmax for most PFTs
and reduced the underestimation for EBF; in summer, the LCC-derived Vcmax reduced the
overestimation of Vcmax for WET, GRA, DBF, and DNF and the underestimation for CRO,
SH, MF, EBF, and ENF. In comparison with the Vcmax from the TRY database, we found
that the TRY-based Vcmax was consistently larger than the LCC-derived Vcmax throughout
the seasons for all biomes, especially for CRO and GRA. The seasonal pattern of the
LCC-derived Vcmax was very similar to those of the LAI and GPP.
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Figure 3. Model calibration accuracy for nine PFTs: (a) CRO, (b) DBF, (c) SH, (d) EBF, (e) GRA, (f) MF,
(g) ENF, and (h) WET. The R2, RMSE, and slope were estimated from the regression of the modeled
GPP and EC-GPP for each biome with the intercept forced to 0. Biome abbreviations are given in
Figure 2. The gray dots represent simulations constrained by seasonal dynamic Vcmax using the “All”
model simulations (dots in pink circles). The dashed and solid lines are the regression line and 1:1
line, respectively.
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Figure 5. Spatial distribution of mean annual European GPP and SIF based on different sources of
data, including (a) FGM GPP, (b) BEPS GPP, (c) FLUXCOM GPP, (d) GLASS GPP, (e) GPP derived
from GOSIF, (f) VPM GPP, and (g) original GOSIF data. Here, (h) illustrates the correlation matrix
between these data.
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Figure 6. Comparison of the interannual variations in annual GPP (Pg C yr−1) simulated by the
FGM and by other methods (including BEPS, MODIS, CCW, GLASS, VPM, GOSIF, FLUXCOM-RF,
FLUXCOM-MARS, and FLUXCOM-ANN). (a) Interannual dynamics of annual GPP for Europe
during 2001–2016. ** and * indicate increasing trends in the total annual GPP from 2001 to 2016 at
p-value < 0.05 and p-value < 0.01, respectively. (b) Temporal correlation (r) between the FGM GPP
and other GPP products. A total of nine global GPP products were estimated by different methods.

Consequently, these differences in Vcmax (Figure 8a,c) led to synchronous changes in
the GPP estimated by the FGM (Figure 8b,d). In comparison with the GPP from “PC2”
(Figure 8b), in spring and autumn, the inclusion of the LCC-derived Vcmax reduced the over-
estimation of GPP for all the PFTs, especially for MF, DBF, DNF, and ENF. In summer, the
LCC-derived Vcmax reduced the overestimation of GPP for GRA and the underestimation
of GPP for CRO, SH, MF, and EBF. In comparison with the GPP from “PC3”, the inclusion
of the LCC-derived Vcmax reduced the overestimation of GPP using the TRY-based Vcmax
(Figure 8d).
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Figure 7. Seasonal dynamics of Vcmax (blue), LAI (green), and GPP (black) for nine PFTs: (a) evergreen
needleleaf forest (ENF), (b) evergreen broadleaf forest (EBF), (c) deciduous needleleaf forest (DNF),
(d) deciduous broadleaf forest (DBF), (e) mixed forest (MF), (f) shrublands (SH), (g) grasslands (GRA),
(h) croplands (CRO), and (i) wetland (WET).
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Figure 8. Relative differences in Vcmax and corresponding relative GPP differences caused by changes
in Vcmax with the seasons. (a) The relative differences in Vcmax between LCC-derived Vcmax and TRY-
based Vcmax; (b) the corresponding relative difference in GPP caused by changes in Vcmax. (c) The
differences between LCC-derived Vcmax and the calibrated Vcmax; (d) the corresponding difference in
GPP caused by changes in Vcmax.
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3.2.2. Including Dynamic Vcmax Information Improved the Estimation of the GPP Spatial
Pattern

The conventional method of fixing Vcmax using the model calibration method and
TRY database overestimated the European GPP by 0.5 Pg C yr−1 (Figure 9a) and 2.9 Pg
C yr−1 (Figure 9b), respectively. Compared with “PC2”, using spatiotemporally explicit
Vcmax information, the terrestrial ecosystem productivity mainly increased for regions in
marine climate zones between 43◦N–60◦N and 0◦E–30◦E but decreased for most of the
regions in other climate zones (Figure 9c). In contrast, the FGM driven by the TRY-based
Vcmax overestimated the GPP for almost all the regions, especially for cropland (Figure 9d).
Including dynamic Vcmax information improved the FGM’s performance in simulating the
variability in European GPP based on the spatial correlations between the estimated annual
GPP and other GPP products or GOSIF data (Figure 9e).
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Figure 9. Spatial pattern of mean annual GPP (g C m−2 yr−1) when Vcmax was parameterized
in the FGM as a PFT-specific constant with two types of data: (a) calibrated Vcmax (“PC2”) and
(b) TRY-based Vcmax (“PC3”). (c) and (d) represent the differences in GPP due to the different Vcmax

parameterizations, i.e., GPP in “All” minus GPP in (a) and (b). (e) Spatial correlation (r) between
the FGM GPP for three different simulations (“All”, “PC2”, and “PC3”) and other GPP products
(including BEPS, FLUXCOM, GLASS, and GOSIF GPP products) and GOSIF data.
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3.2.3. Interannual Changes in Vcmax Only Have a Minor Effect on GPP in a Limited Period
of 16 Years

We further evaluated the Vcmax change effect on GPP on annual time scales (Figure 10).
Compared with “PC2”, the annual GPP of cropland, grassland, and forests demonstrated
reductions of 8%, 21%, and 9%, respectively, with the inclusion of the LCC-derived Vcmax.
However, we also noticed a slight 8% increase in the GPP for shrubland. Using the TRY-
based Vcmax, the FGM overestimated the annual GPP of cropland, grassland, shrubland,
and forests by 49%, 34%, 26%, and 15%, respectively.
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Figure 10. The Vcmax change effect on GPP on annual time scales. (a) Difference in mean annual total
GPP and (b) interannual variations in total GPP from 2001 to 2016 for the four dominant vegetation
types (i.e., crop, forest, shrub, and forest) in the simulations w/o the Vcmax constraint. (c) The Vcmax

change effect on interannual variations in total GPP across Europe simulated by the FGM in four
model simulations (i.e., “All”, “PC1”, “PC2” and “PC3”) using the LCC-derived dynamic Vcmax from
2001 to 2016 (“All”), LCC-derived dynamic Vcmax from 2001 to 2016 (“PC1”), calibrated constant
Vcmax (“PC2”), and TRY-based constant Vcmax (“PC3”). Section 2.2.3 contains descriptions of these
four simulation experiments. ** in (c) indicate increasing trends in the total annual GPP from 2001 to
2016 at p-value < 0.01.
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European vegetation appeared markedly more productive from 2001 to 2016. However,
if we fixed Vcmax in the FGM using the calibrated Vcmax or TRY-based Vcmax, both the
magnitude of and the rate of increase in GPP were overestimated (Figure 10c). Compared
with “All”, “PC2” and “PC3” overestimated the annual increasing GPP trend by 14% and
20%, respectively. The magnitude and interannual dynamics of GPP simulated by the FGM
for “PC1” (9.42 Pg C yr−1) were close to that for “All” (9.40 Pg C yr−1). In contrast, the
annual GPPs for “PC2” (9.90 Pg C yr−1) and “PC3” (12.30 Pg C yr−1) were significantly
higher than that for “All”. Thus, the inclusion of spatial and seasonal variations in Vcmax
improved the GPP estimation, while interannual changes in Vcmax contributed little to the
GPP in the limited study period of sixteen years.

4. Discussion
4.1. Effects of Vcmax Change on GPP Estimation

Many studies have demonstrated that Vcmax changes across both space and time. Leaf
chlorophyll abundance is closely linked to photosynthesis capacity [56,59,123]. The Vcmax
derived from the LCC (i.e., LCC-derived Vcmax) showed strong seasonality and significant
spatial variation across Europe (Figure S3a) but only slight interannual variation over
the limited study period of 16 years (Figure S3b). A comparison with the EC-GPP and
other GPP or SIF products supported our hypothesis: the consideration of spatiotemporal
changes in Vcmax provided more reliable GPP estimations for Europe. Compared with the
GPP estimations obtained by fixing the Vcmax using the TRY database, the inclusion of
temporally and spatially explicit Vcmax using the satellite-derived LCC product reduced
the bias in the estimated daily GPP (Figure 2) and increased the spatial consistency between
the FGM GPP and other GPP products or GOSIF data (Figure 9).

The positive impact of the LCC on GPP simulations on the site level in Europe that
found in our study is comparable with the results of previous studies on single sites (with
R2 enhanced by 10–12% and RMSE decreased by 24–32%) [124,125] or across multiple sites
with different PFTs (with R2 enhanced by 9–22% and RMSE decreased by 15–32%) [123].
In this study, we found a 23% increase in R2 and a 25% decrease in RMSE (Figure 2)
between the modeled GPP and EC-GPP for 19 EuroFLUX sites across 9 PFTs using the
LCC-derived Vcmax to estimate GPP. On the regional scale, we found a 17% decrease in
the annual GPP across the 19 EuroFLUX sites and a 24% decrease in the annual GPP
for Europe. The maximum leaf photosynthesis capacity is known to change with the
seasons under the influences of multiple factors, such as leaf development [53], changes
in climatic variables [126], and drought conditions [127]. In this study, we found a higher
Vcmax during summer than in spring and autumn (Figure 7). However, the Vcmax field
measurements were generally collected close to the peak growing seasons. Thus, assuming
a constant Vcmax based on the TRY database led to the overestimation of Vcmax in spring
and autumn, which further resulted in an overestimation of GPP. The overestimation of
the TRY-based GPP was in agreement with previous findings observed on a global scale.
However, Luo et al. (2019) found only a 7% decrease in the annual GPP across 124 sites and
a 7% decrease in the global GPP [123], which is much lower than the regional Vcmax change
effect on GPP across Europe (17–24%).

While the Vcmax across Europe showed a small (but not significant) increasing trend
from 2001 to 2016 (Figure S5), we found that including the interannual changes in Vcmax
had only a minor impact on the interannual GPP change trend for the limited study
period of 16 years (Figure 10). However, we could not neglect the interannual changes
in Vcmax, since plants may continue to acclimate their leaf chemistry and photosynthesis
capacity in response to climate change, especially in response to continued global warming
and elevated CO2 concentrations [128]. According to optimality theory, rising CO2 and
warming can reduce the global canopy demand for Rubisco and result in reductions in
Vcmax in the long term [129]. In contrast, we found that the LCC-derived Vcmax showed
an increasing trend (that was not statistically significant) across Europe (Figure S3), which
is also revealed by the Vcmax estimated from SIF data [51,57]. Plants in high arctic regions
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are sensitive to changes in temperature [130]. During the study period, the interannual
mean air temperature in Europe showed a significant increasing trend (+0.029 ◦C yr−1,
R2 = 0.55, p = 0.01) (Figure S4b). However, we also observed enhanced VPD and water stress
caused by global warming in Europe (Figure S4c). Plants may adapt to combined changes
in different environmental factors, such as radiation brightening, warming temperatures,
and enhanced VPD (Figure S4), by increasing their Vcmax to match the light-limited rate of
photosynthesis and optimize carbon fixation [49,131,132].

4.2. Comparison with other GPP Products

The increasing interannual trend in the GPP predicted by the FGM (+0.55% yr−1) was
in the range of that estimated using other GPP products (+0.47% yr−1 to +0.92% yr−1)
(Figure 6). From 2001 to 2016, terrestrial ecosystem productivity showed a significant
increasing trend (p < 0.01) in Europe according to five previous GPP products (i.e., BEPS,
MODIS, GLASS, GOSIF, and VPM) (Figure 6). The annual total GPP across Europe from
2001 to 2016 predicted by the VPM [116] showed an increasing trend of +0.92% yr−1,
which is almost double the predictions of the FGM (Figure 6). Other studies reported
that the increasing GPP trend detected by the VPM may be an overestimate [2], since
the VPM is not strictly calibrated using field observations at FLUXNET sites [116]. In
contrast, the CCW GPP products failed to detect the increasing GPP trend across Europe
while successfully capturing the increasing trend of GPP on the global scale [2]. In the
case of LUE models, the model parameters, especially those related to the fraction of
photosynthetically active radiation (FPAR) and LUE, may have uncertainties and lead to
errors in model estimations. Previous studies that estimated GPP dynamics were based
mainly on LUE models and process-based models and, in most cases, did not include the
spatial and temporal dynamics of Vcmax [51]. These models are unlikely to produce reliable
simulations of photosynthesis–climate interactions at a fine temporal resolution or on a
large scale.

Prior studies highlighted continuous increases in global terrestrial production during
the last two to three decades based on remote sensing data [2,133]. In particular, enhanced
GPP mainly occurs in the boreal and temperate regions, where widespread greening and
climate warming occur [130]. In this study, we also found that European vegetation showed
a significant ‘greening’ trend (i.e., increases in the LAI) from 2001 to 2016 (+0.62% yr−1).
In addition, we further found that the GPP increasing trend throughout the European
terrestrial ecosystem estimated by the FGM (+0.55% yr−1) was proportional to the greening
rate detected by the LAI and other GPP products (0.47–0.67% yr−1) (Figure 11). With the
help of spatially and temporally continuous Vcmax maps, we can expect that process-based
models will help us to better understand the driving forces of enhanced carbon assimilation
in Europe. However, determining how land surface greening, climate change, and other
factors contribute to the increase in GPP observed across Europe is beyond the scope of
this study and warrants further investigation.

4.3. Uncertainties in Vcmax Data and Implications for Photosynthesis Simulations

To examine the accuracy of the LCC-based Vcmax products used in this study, we first
built an observational dataset of Vcmax by compiling field measurements collected at nine sites
covering four PFTs (i.e., DBF, EBF, ENF, and GRA) across Europe (Figure 12) [127,134–141].
Then, we compared the mean Vcmax seasonality derived from the LCC, PFT-specific Vcmax,
and field measurements of Vcmax for these sites (Figure 12a–i). The distribution of the monthly
mean value of Vcmax measurements across the different sites was comparable to that of the
corresponding Vcmax derived from the LCC (Figure 12k). The monthly averaged Vcmax
values for site NOIT0-03, derived from the LCC, were well correlated with the field data
collected (r = 0.64) during the growing season (i.e., from April to October) (Figure 12l).
When we calibrated the Vcmax according to the PFTs, the FGM overestimated the Vcmax
during spring, autumn, and winter at most sites, the same result as that which we obtained
for the whole study area. It is worth noting that the Vcmax used in this study represents the
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maximum carboxylation rate at a standardized temperature of 25 ◦C (i.e., Vcmax25), which
is a proxy for the Rubisco content rather than a realized rate at ambient temperatures. Thus,
here, we observed larger Vcmax values (Figure S3a) than the Vcmax rates at the average
growing season temperature reported in other studies [142].

Recently, several global-scale Vcmax products of different spatial and temporal res-
olutions have been distributed [51,57,58] with contrasting patterns. Large uncertainties
still exist regarding the current Vcmax products, especially in terms of the temporal varia-
tions during the growing season [53]. Because a limited quantity of field-measured Vcmax
data are available for validation, remote sensing Vcmax products have not yet been fully
tested. Although efforts have been made to predict Vcmax on the global scale using remote
sensing data [55,57,58,131,143], the mechanisms driving the spatiotemporal variability in
plant photosynthetic production (e.g., environmental acclimation, leaf age effect) are still
ongoing [53,54,139].

We found that the seasonal pattern of the LCC-derived Vcmax was very similar to that
of the LAI. Thus, an alternative strategy for the LCC-based Vcmax is to use a PFT-specific
Vcmax and scale it according to the LAI seasonality. This LAI-based Vcmax scaling approach
was used for some models (e.g., BESS) [33,144] and could result in a robust performance,
at least regarding the seasonality aspect. The Vcmax change effect on the GPP investigated
here highlights the need for detailed studies using multi-source Vcmax datasets on different
scales (e.g., site-level field measurements and large-scale remote sensing retrievals).

Although we improved European GPP estimations by including the spatiotemporal
dynamics of Vcmax, there are still some uncertainties regarding the GPP estimated by
the FGM. Uncertainties regarding the input parameter datasets are one possible source.
Another possible limitation is that the algorithm of the FGM, as presented here, does not
use precipitation or soil moisture data directly and implements only VPD, which is partly
related to soil moisture. We assumed that VPD would be able to replace soil moisture for
the assessment of the influence of drought on GPP. This is an example of how a future
model could be improved.
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Figure 11. Interannual trends in the GPP and LAI scaled by multiple-year means. The vertical dashed
line indicates the rate of change in the LAI itself from 2001 to 2016 based on the GLASS LAI product.
** and * indicate increasing trends in the total annual GPP from 2001 to 2016 at p-value < 0.05 and
p-value < 0.01, respectively. GPP = gross primary production; LUE = light use efficiency; LAI = leaf
area index.



Remote Sens. 2023, 15, 1172 22 of 29

Remote Sens. 2023, 15, x FOR PEER REVIEW 22 of 30 
 

 

To examine the accuracy of the LCC-based Vcmax products used in this study, we first 

built an observational dataset of Vcmax by compiling field measurements collected at nine 

sites covering four PFTs (i.e., DBF, EBF, ENF, and GRA) across Europe (Figure 12) 

[127,134–141]. Then, we compared the mean Vcmax seasonality derived from the LCC, PFT-

specific Vcmax, and field measurements of Vcmax for these sites (Figure 12a–i). The distribu-

tion of the monthly mean value of Vcmax measurements across the different sites was com-

parable to that of the corresponding Vcmax derived from the LCC (Figure 12k). The monthly 

averaged Vcmax values for site NOIT0-03, derived from the LCC, were well correlated with 

the field data collected (r = 0.64) during the growing season (i.e., from April to October) 

(Figure 12l). When we calibrated the Vcmax according to the PFTs, the FGM overestimated 

the Vcmax during spring, autumn, and winter at most sites, the same result as that which 

we obtained for the whole study area. It is worth noting that the Vcmax used in this study 

represents the maximum carboxylation rate at a standardized temperature of 25 °C (i.e., 

Vcmax25), which is a proxy for the Rubisco content rather than a realized rate at ambient 

temperatures. Thus, here, we observed larger Vcmax values (Figure S3a) than the Vcmax rates 

at the average growing season temperature reported in other studies [142]. 

 

Figure 12. Comparison of Vcmax derived from the LCC, PFT-specific Vcmax, and field-measurements 

for the following sites: (a) ULES94, (b) BERL95, (c) ORSA97, (d) ESSW94, (e) ALIT98, (f) TRIT04, (g) 

PLFR99, (h) NOIT01-03, and (i) GIGE00. The geographical map in (j) shows the locations of these 

nine sites in Europe. The violin plot in (k) compares the monthly mean values of Vcmax measurements 

and corresponding Vcmax derived from LCC-derived Vcmax maps. The scatter plot in (l) validates the 

Figure 12. Comparison of Vcmax derived from the LCC, PFT-specific Vcmax, and field-measurements
for the following sites: (a) ULES94, (b) BERL95, (c) ORSA97, (d) ESSW94, (e) ALIT98, (f) TRIT04,
(g) PLFR99, (h) NOIT01-03, and (i) GIGE00. The geographical map in (j) shows the locations of these
nine sites in Europe. The violin plot in (k) compares the monthly mean values of Vcmax measurements
and corresponding Vcmax derived from LCC-derived Vcmax maps. The scatter plot in (l) validates
the LCC-derived Vcmax using time series field measurements collected at site NOIT01-03 during the
growing season (April to October). The abbreviations in (a–i) denote the PFTs of each site according
to field surveys of plant species. Four PFTs are included, including deciduous broadleaf forest (DBF),
evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), and grasslands (GRA).

5. Conclusions

In this study, by including the spatial and temporal variations in the maximum
photosynthetic capacity rate (i.e., Vcmax) derived from the leaf chlorophyll metric using a
remote-sensing-driven process-based model (i.e., FGM), we improved the estimation of
the European GPP dynamics from 2001 to 2016 at 8-day time intervals and a 500 m spatial
resolution. Compared with the traditional method of fixing the Vcmax as a PFT-specific
constant using the empirical parameterization method, we obtained an improved model
performance by modeling GPP considering the spatial and temporal variations in Vcmax.
The FGM predictions revealed a greening and more productive Europe, consistent with
the existing global-scale GPP products and recent literature reports of enhanced carbon
sinks in boreal and temperate regions. Our reanalysis suggests that a process-based GPP
model using Farquhar’s photosynthesis model requires the careful parameterization of
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Vcmax to accurately represent the photosynthetic capacity of terrestrial ecosystems. This
study contributes to a better understanding of the role of European vegetation in the global
carbon cycle.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs15051172/s1, Figure S1: Validation of the FGM model performance at
different cropland sites against EC-GPP; Figure S2: A closer look at the LAI time series revealed that
GLASS missed some of the second growing phases due to crop rotation at the BE-Lon site; Figure S3:
Spatial and temporal patterns of LCC-based Vcmax from 2001 to 2016 at an 8-day interval; Figure S4:
Interannual dynamics of mean downward solar radiation, air temperature, and vapor pressure deficit
during the period from 2001 to 2016.
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97. Dušek, J.; Čížková, H.; Stellner, S.; Czerný, R.; Květ, J. Fluctuating water table affects gross ecosystem production and gross
radiation use efficiency in a sedge-grass marsh. Hydrobiologia 2012, 692, 57–66. [CrossRef]

98. Zak, D.; Reuter, H.; Augustin, J.; Shatwell, T.; Barth, M.; Gelbrecht, J.; McInnes, R. Changes of the CO2 and CH4 production
potential of rewetted fens in the perspective of temporal vegetation shifts. Biogeosciences 2015, 12, 2455–2468. [CrossRef]

99. Hommeltenberg, J.; Schmid, H.; Drösler, M.; Werle, P. Can a bog drained for forestry be a stronger carbon sink than a natural bog
forest? Biogeosciences 2014, 11, 3477–3493. [CrossRef]

100. Krause, P.; Boyle, D.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci.
2005, 5, 89–97. [CrossRef]

101. Chatterjee, S.; Hadi, A.S. Influential observations, high leverage points, and outliers in linear regression. Stat. Sci. 1986, 1, 379–393.
102. He, L.; Chen, J.M.; Pisek, J.; Schaaf, C.B.; Strahler, A.H. Global clumping index map derived from the MODIS BRDF product.

Remote Sens. Environ. 2012, 119, 118–130. [CrossRef]
103. Croft, H.; Chen, J.M.; Wang, R.; Mo, G.; Luo, S.; Luo, X.; He, L.; Gonsamo, A.; Arabian, J.; Zhang, Y.; et al. The global distribution

of leaf chlorophyll content. Remote Sens. Environ. 2020, 236, 111479. [CrossRef]
104. Xu, M.; Liu, R.; Chen, J.M.; Liu, Y.; Shang, R.; Ju, W.; Wu, C.; Huang, W. Retrieving leaf chlorophyll content using a matrix-based

vegetation index combination approach. Remote Sens. Environ. 2019, 224, 60–73. [CrossRef]
105. Lu, X.; Croft, H.; Chen, J.M.; Luo, Y.; Ju, W. Estimating photosynthetic capacity from optimized Rubisco–chlorophyll relationships

among vegetation types and under global change. Environ. Res. Lett. 2022, 17, 014028. [CrossRef]
106. Wang, S.; Li, Y.; Ju, W.; Chen, B.; Chen, J.; Croft, H.; Mickler, R.A.; Yang, F. Estimation of Leaf Photosynthetic Capacity From

Leaf Chlorophyll Content and Leaf Age in a Subtropical Evergreen Coniferous Plantation. J. Geophys. Res. Biogeosci. 2020, 125,
e2019JG005020. [CrossRef]

107. Friedl, M.; Sulla-Menashe, D. MCD12Q1 MODIS/Terra+ Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006, NASA
EOSDIS Land Processes DAAC [data set]. Available online: https://lpdaac.usgs.gov/products/mcd12q1v006/ (accessed on 20
April 2020).

108. Xiao, Z.; Liang, S.; Wang, J.; Xiang, Y.; Zhao, X.; Song, J. Long-time-series global land surface satellite leaf area index product
derived from MODIS and AVHRR surface reflectance. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5301–5318. [CrossRef]

109. Xiao, Z.; Liang, S.; Wang, J.; Chen, P.; Yin, X.; Zhang, L.; Song, J. Use of general regression neural networks for generating the
GLASS leaf area index product from time-series MODIS surface reflectance. IEEE Trans. Geosci. Remote Sens. 2013, 52, 209–223.
[CrossRef]

http://doi.org/10.1023/A:1023027709805
http://doi.org/10.5194/bg-11-1627-2014
http://doi.org/10.1111/j.1600-0889.2007.00259.x
http://doi.org/10.1111/j.1365-2486.2004.00819.x
http://doi.org/10.1111/j.1365-2486.2008.01684.x
http://doi.org/10.1088/1748-9326/8/2/025008
http://doi.org/10.1111/gcb.12518
http://www.ncbi.nlm.nih.gov/pubmed/24395474
http://doi.org/10.1016/j.agee.2009.05.006
http://doi.org/10.1016/j.agrformet.2011.04.015
http://doi.org/10.5194/bg-10-5931-2013
http://doi.org/10.1007/s10021-011-9481-3
http://doi.org/10.1016/j.agrformet.2004.05.002
http://doi.org/10.1016/S0168-1923(01)00244-1
http://doi.org/10.5194/bg-7-2601-2010
http://doi.org/10.1007/s10750-012-0998-z
http://doi.org/10.5194/bg-12-2455-2015
http://doi.org/10.5194/bg-11-3477-2014
http://doi.org/10.5194/adgeo-5-89-2005
http://doi.org/10.1016/j.rse.2011.12.008
http://doi.org/10.1016/j.rse.2019.111479
http://doi.org/10.1016/j.rse.2019.01.039
http://doi.org/10.1088/1748-9326/ac444d
http://doi.org/10.1029/2019JG005020
https://lpdaac.usgs.gov/products/mcd12q1v006/
http://doi.org/10.1109/TGRS.2016.2560522
http://doi.org/10.1109/TGRS.2013.2237780


Remote Sens. 2023, 15, 1172 28 of 29

110. Zhang, X.; Wang, D.; Liu, Q.; Yao, Y.; Jia, K.; He, T.; Jiang, B.; Wei, Y.; Ma, H.; Zhao, X. An operational approach for generating
the global land surface downward shortwave radiation product from MODIS data. IEEE Trans. Geosci. Remote Sens. 2019, 57,
4636–4650. [CrossRef]

111. Zhang, X.; Liang, S.; Zhou, G.; Wu, H.; Zhao, X. Generating Global LAnd Surface Satellite incident shortwave radiation and
photosynthetically active radiation products from multiple satellite data. Remote Sens. Environ. 2014, 152, 318–332. [CrossRef]

112. Viovy, N. CRUNCEP Version 7-Atmospheric Forcing Data for the Community Land Model; Research Data Archive at the National
Center for Atmospheric Research; Computational and Information Systems Laboratory: Boulder CO, USA, 2018; Volume 10.

113. Li, X.; Xiao, J. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and
reanalysis data. Remote Sens. 2019, 11, 517. [CrossRef]

114. Xiao, J.; Li, X.; He, B.; Arain, M.A.; Beringer, J.; Desai, A.R.; Emmel, C.; Hollinger, D.Y.; Krasnova, A.; Mammarella, I.; et al.
Solar-induced chlorophyll fluorescence exhibits a universal relationship with gross primary productivity across a wide variety of
biomes. Glob. Chang. Biol. 2019, 25, e4–e6. [CrossRef] [PubMed]

115. Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M.; Hashimoto, H. A continuous satellite-derived measure of
global terrestrial primary production. Bioscience 2004, 54, 547–560. [CrossRef]

116. Zhang, Y.; Xiao, X.; Wu, X.; Zhou, S.; Zhang, G.; Qin, Y.; Dong, J. A global moderate resolution dataset of gross primary production
of vegetation for 2000–2016. Sci. Data 2017, 4, 1–13. [CrossRef]

117. Yuan, W.; Liu, S.; Yu, G.; Bonnefond, J.-M.; Chen, J.; Davis, K.; Desai, A.R.; Goldstein, A.H.; Gianelle, D.; Rossi, F. Global estimates
of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens. Environ. 2010,
114, 1416–1431. [CrossRef]

118. Jung, M.; Schwalm, C.; Migliavacca, M.; Walther, S.; Camps-Valls, G.; Koirala, S.; Anthoni, P.; Besnard, S.; Bodesheim, P.;
Carvalhais, N. Scaling carbon fluxes from eddy covariance sites to globe: Synthesis and evaluation of the FLUXCOM approach.
Biogeosciences 2020, 17, 1343–1365. [CrossRef]

119. Tramontana, G.; Jung, M.; Schwalm, C.R.; Ichii, K.; Camps-Valls, G.; Ráduly, B.; Reichstein, M.; Arain, M.A.; Cescatti, A.; Kiely, G.
Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences 2016, 13,
4291–4313. [CrossRef]

120. Li, X.; Xiao, J.; He, B.; Altaf Arain, M.; Beringer, J.; Desai, A.R.; Emmel, C.; Hollinger, D.Y.; Krasnova, A.; Mammarella, I.; et al.
Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: First
global analysis based on OCO-2 and flux tower observations. Glob. Chang. Biol. 2018, 24, 3990–4008. [CrossRef] [PubMed]

121. He, Q.; Ju, W.; Dai, S.; He, W.; Song, L.; Wang, S.; Li, X.; Mao, G. Drought risk of global terrestrial gross primary productivity
over the last 40 years detected by a remote sensing-driven process model. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG005944.
[CrossRef]

122. Liu, Y.; Zhou, Y.; Ju, W.; Wang, S.; Wu, X.; He, M.; Zhu, G. Impacts of droughts on carbon sequestration by China’s terrestrial
ecosystems from 2000 to 2011. Biogeosciences 2014, 11, 2583–2599. [CrossRef]

123. Luo, X.; Croft, H.; Chen, J.M.; He, L.; Keenan, T.F. Improved estimates of global terrestrial photosynthesis using information on
leaf chlorophyll content. Glob. Chang. Biol. 2019, 25, 2499–2514. [CrossRef]

124. Houborg, R.; Anderson, M.C.; Daughtry, C.; Kustas, W.; Rodell, M. Using leaf chlorophyll to parameterize light-use-efficiency
within a thermal-based carbon, water and energy exchange model. Remote Sens. Environ. 2011, 115, 1694–1705. [CrossRef]

125. Luo, X.; Croft, H.; Chen, J.M.; Bartlett, P.; Staebler, R.; Froelich, N. Incorporating leaf chlorophyll content into a two-leaf terrestrial
biosphere model for estimating carbon and water fluxes at a forest site. Agric. For. Meteorol. 2018, 248, 156–168. [CrossRef]

126. Laurent, M.; Tu, K.P.; Boniello, R.A.; Goldstein, A.H. Seasonality of photosynthetic parameters in a multi-specific and vertically
complex forest ecosystem in the Sierra Nevada of California. Tree Physiol. 2006, 26, 729–741.

127. Grassi, G.; Vicinelli, E.; Ponti, F.; Cantoni, L.; Magnani, F. Seasonal and interannual variability of photosynthetic capacity in
relation to leaf nitrogen in a deciduous forest plantation in northern Italy. Tree Physiol. 2005, 25, 349–360. [CrossRef]

128. Smith, N.G.; Keenan, T.F. Mechanisms underlying leaf photosynthetic acclimation to warming and elevated CO2 as inferred from
least-cost optimality theory. Glob. Chang. Biol. 2020, 26, 5202–5216. [CrossRef] [PubMed]

129. Dong, N.; Wright, I.J.; Chen, J.M.; Luo, X.; Wang, H.; Keenan, T.F.; Smith, N.G.; Prentice, I.C. Rising CO2 and warming reduce
global canopy demand for nitrogen. New Phytol. 2022, 235, 1692–1700. [CrossRef] [PubMed]

130. Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.;
et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259,
698–709. [CrossRef]

131. Smith, N.G.; Keenan, T.F.; Colin Prentice, I.; Wang, H.; Wright, I.J.; Niinemets, Ü.; Crous, K.Y.; Domingues, T.F.; Guerrieri, R.; Yoko
Ishida, F. Global photosynthetic capacity is optimized to the environment. Ecol. Lett. 2019, 22, 506–517. [CrossRef] [PubMed]

132. Smith, N.G.; Dukes, J.S. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant
types. Glob. Chang. Biol. 2017, 23, 4840–4853. [CrossRef] [PubMed]

133. Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven
increases in global terrestrial net primary production from 1982 to 1999. science 2003, 300, 1560–1563. [CrossRef]

134. Grassi, G.; Bagnaresi, U. Foliar morphological and physiological plasticity in Picea abies and Abies alba saplings along a natural
light gradient. Tree Physiol. 2001, 21, 959–967. [CrossRef] [PubMed]

http://doi.org/10.1109/TGRS.2019.2891945
http://doi.org/10.1016/j.rse.2014.07.003
http://doi.org/10.3390/rs11050517
http://doi.org/10.1111/gcb.14565
http://www.ncbi.nlm.nih.gov/pubmed/30614142
http://doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2
http://doi.org/10.1038/sdata.2017.165
http://doi.org/10.1016/j.rse.2010.01.022
http://doi.org/10.5194/bg-17-1343-2020
http://doi.org/10.5194/bg-13-4291-2016
http://doi.org/10.1111/gcb.14297
http://www.ncbi.nlm.nih.gov/pubmed/29733483
http://doi.org/10.1029/2020JG005944
http://doi.org/10.5194/bg-11-2583-2014
http://doi.org/10.1111/gcb.14624
http://doi.org/10.1016/j.rse.2011.02.027
http://doi.org/10.1016/j.agrformet.2017.09.012
http://doi.org/10.1093/treephys/25.3.349
http://doi.org/10.1111/gcb.15212
http://www.ncbi.nlm.nih.gov/pubmed/32525621
http://doi.org/10.1111/nph.18076
http://www.ncbi.nlm.nih.gov/pubmed/35297050
http://doi.org/10.1016/j.foreco.2009.09.023
http://doi.org/10.1111/ele.13210
http://www.ncbi.nlm.nih.gov/pubmed/30609108
http://doi.org/10.1111/gcb.13735
http://www.ncbi.nlm.nih.gov/pubmed/28560841
http://doi.org/10.1126/science.1082750
http://doi.org/10.1093/treephys/21.12-13.959
http://www.ncbi.nlm.nih.gov/pubmed/11498343


Remote Sens. 2023, 15, 1172 29 of 29

135. Ali, A.A.; Xu, C.; Rogers, A.; McDowell, N.G.; Medlyn, B.E.; Fisher, R.A.; Wullschleger, S.D.; Reich, P.B.; Vrugt, J.A.; Bauerle, W.L.;
et al. Global-scale environmental control of plant photosynthetic capacity. Ecol. Appl. 2015, 25, 2349–2365. [CrossRef] [PubMed]

136. Maire, V.; Martre, P.; Kattge, J.; Gastal, F.; Esser, G.; Fontaine, S.; Soussana, J.-F. The Coordination of Leaf Photosynthesis Links C
and N Fluxes in C3 Plant Species. PLoS ONE 2012, 7, e38345. [CrossRef] [PubMed]

137. Medlyn, B.E.; Badeck, F.-W.; De Pury, D.G.G.; Barton, C.V.M.; Broadmeadow, M.; Ceulemans, R.; De Angelis, P.; Forstreuter, M.;
Jach, M.E.; Kellomäki, S.; et al. Effects of elevated [CO2] on photosynthesis in European forest species: A meta-analysis of model
parameters. Plant Cell Environ. 1999, 22, 1475–1495. [CrossRef]

138. Niinemets, Ü.; Kull, O.; Tenhunen, J. An analysis of light effects on foliar morphology, physiology, and light interception in
temperate deciduous woody species of contrasting shade tolerance. Tree Physiol. 1998, 18, 681–696. [CrossRef] [PubMed]

139. Niinemets, Ü.; Cescatti, A.; Rodeghiero, M.; Tosens, T. Leaf internal diffusion conductance limits photosynthesis more strongly in
older leaves of Mediterranean evergreen broad-leaved species. Plant Cell Environ. 2005, 28, 1552–1566. [CrossRef]

140. Rogers, A.; Fischer, B.U.; Bryant, J.; Frehner, M.; Blum, H.; Raines, C.A.; Long, S.P. Acclimation of photosynthesis to elevated
co2under low-nitrogen nutrition is affected by the capacity for assimilate utilization. Perennial ryegrass under free-air CO2
enrichment. Plant Physiol. 1998, 118, 683–689. [CrossRef] [PubMed]

141. Frak, E.; Le Roux, X.; Millard, P.; Adam, B.; Dreyer, E.; Escuit, C.; Sinoquet, H.; Vandame, M.; Varlet-Grancher, C. Spatial
distribution of leaf nitrogen and photosynthetic capacity within the foliage of individual trees: Disentangling the effects of local
light quality, leaf irradiance, and transpiration. J. Exp. Bot. 2002, 53, 2207–2216. [CrossRef]

142. Smith, N.G.; Dukes, J.S. Drivers of leaf carbon exchange capacity across biomes at the continental scale. Ecology 2018, 99,
1610–1620. [CrossRef] [PubMed]

143. Walker, A.P.; Quaife, T.; Van Bodegom, P.M.; De Kauwe, M.G.; Keenan, T.F.; Joiner, J.; Lomas, M.R.; MacBean, N.; Xu, C.; Yang, X.
The impact of alternative trait-scaling hypotheses for the maximum photosynthetic carboxylation rate (Vcmax) on global gross
primary production. New Phytol. 2017, 215, 1370–1386. [CrossRef]

144. Ryu, Y.; Baldocchi, D.D.; Kobayashi, H.; Van Ingen, C.; Li, J.; Black, T.A.; Beringer, J.; Van Gorsel, E.; Knohl, A.; Law, B.E.
Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and
evapotranspiration from 1 km to global scales. Glob. Biogeochem. Cycles 2011, 25, GB4017. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1890/14-2111.1
http://www.ncbi.nlm.nih.gov/pubmed/26910960
http://doi.org/10.1371/journal.pone.0038345
http://www.ncbi.nlm.nih.gov/pubmed/22685562
http://doi.org/10.1046/j.1365-3040.1999.00523.x
http://doi.org/10.1093/treephys/18.10.681
http://www.ncbi.nlm.nih.gov/pubmed/12651418
http://doi.org/10.1111/j.1365-3040.2005.01392.x
http://doi.org/10.1104/pp.118.2.683
http://www.ncbi.nlm.nih.gov/pubmed/9765554
http://doi.org/10.1093/jxb/erf065
http://doi.org/10.1002/ecy.2370
http://www.ncbi.nlm.nih.gov/pubmed/29705984
http://doi.org/10.1111/nph.14623
http://doi.org/10.1029/2011GB004053

	Introduction 
	Materials and Methods 
	Study Regions and Flux Towers 
	Methods 
	A Process-Based Farquhar GPP Model (FGM) 
	Model Calibration and Validation Methods 
	Simulation Experiments 
	Data Analysis Methods 

	Data 
	Flux Data 
	Forcing Datasets for the FGM 
	Global GPP Products for Intercomparison 


	Results 
	Model Evaluation 
	Including Dynamic Vcmax Information Improved GPP Estimation at EuroFLUX Sites 
	FGM GPP Estimations Matched with GOSIF and Other GPP Products 

	Impacts of Vcmax Change on GPP across Europe 
	Dynamic Vcmax Information Is Important for the Accurate Estimation of GPP Seasonality 
	Including Dynamic Vcmax Information Improved the Estimation of the GPP Spatial Pattern 
	Interannual Changes in Vcmax Only Have a Minor Effect on GPP in a Limited Period of 16 Years 


	Discussion 
	Effects of Vcmax Change on GPP Estimation 
	Comparison with other GPP Products 
	Uncertainties in Vcmax Data and Implications for Photosynthesis Simulations 

	Conclusions 
	References

