960 research outputs found

    The Complete Chloroplast Genome of Ginkgo biloba Reveals the Mechanism of Inverted Repeat Contraction

    Get PDF
    We determined the complete chloroplast genome (cpDNA) of Ginkgo biloba (common name: ginkgo), the only relict of ginkgophytes from the Triassic Period. The cpDNA molecule of ginkgo is quadripartite and circular, with a length of 156,945 bp, which is 6,458 bp shorter than that of Cycas taitungensis. In ginkgo cpDNA, rpl23 becomes pseudo, only one copy of ycf2 is retained, and there are at least five editing sites. We propose that the retained ycf2 is a duplicate of the ancestral ycf2, and the ancestral one has been lost from the inverted repeat A (IRA). This loss event should have occurred and led to the contraction of IRs after ginkgos diverged from other gymnosperms. A novel cluster of three transfer RNA (tRNA) genes, trnY-AUA, trnC-ACA, and trnSeC-UCA, was predicted to be located between trnC-GCA and rpoB of the large single-copy region. Our phylogenetic analysis strongly suggests that the three predicted tRNA genes are duplicates of trnC-GCA. Interestingly, in ginkgo cpDNA, the loss of one ycf2 copy does not significantly elevate the synonymous rate (Ks) of the retained copy, which disagrees with the view of Perry and Wolfe (2002) that one of the two-copy genes is subjected to elevated Ks when its counterpart has been lost. We hypothesize that the loss of one ycf2 is likely recent, and therefore, the acquired Ks of the retained copy is low. Our data reveal that ginkgo possesses several unique features that contribute to our understanding of the cpDNA evolution in seed plants

    Isolated tracheal injury after whiplash

    Get PDF
    AbstractWhiplash, a sudden acceleration–deceleration movement that can cause diverse symptoms such as neck pain, cervicogenic headache, restricted neck movement, tingling of the arms (central cord syndrome), and dizziness. However, laryngotracheal injuries after whiplash are extremely rare. We report the case of a 25-year-old Taiwanese female who presented to the emergency department with severe posterior midline neck pain after a rear-end motorcycle collision. Her C-spine X-ray showed no definite fracture; furthermore, her neck noncontrast-enhanced CT scan revealed paratracheal free air. She was discharged uneventfully after a 12-h observation period. Laryngotracheal injuries after whiplash, a hyperextension–hyperflexion movement, are potentially life-threatening and could lead to airway obstruction. Such injuries should not be overlooked. To the best of our knowledge, this is the first case report of isolated laryngotracheal injury after whiplash

    Scopoletin 8-Hydroxylase-Mediated Fraxetin Production is Crucial for Iron Mobilization

    Get PDF
    Iron (Fe) is an essential mineral nutrient and an important factor for the composition of natural plant communities. Low Fe availability in aerated soils with neutral or alkaline pH has led to the evolution of elaborate mechanisms that extract Fe from the soil solution. In Arabidopsis (Arabidopsis thaliana), Fe is acquired by an orchestrated strategy that comprises mobilization, chelation, and reduction of Fe3+ prior to its uptake. Here, we show that At3g12900, previously annotated as scopoletin 8-hydroxylase (S8H), participates in Fe acquisition by mediating the biosynthesis of fraxetin (7,8-dihydroxy-6-methoxycoumarin), a coumarin derived from the scopoletin pathway. S8H is highly induced in roots of Fe-deficient plants both at the transcript and protein levels. Mutants defective in the expression of S8H showed increased sensitivity to growth on pH 7.0 media supplemented with an immobile source of Fe and reduced secretion of fraxetin. Transgenic lines overexpressing S8H exhibited an opposite phenotype. Homozygous s8h mutants grown on media with immobilized Fe accumulated significantly more scopolin, the storage form of scopoletin, supporting the designated function of S8H in scopoletin hydroxylation. Fraxetin exhibited Fe-reducing properties in vitro with higher rates being observed at neutral relative to acidic pH. Supplementing the media containing immobile Fe with fraxetin partially rescued the s8h mutants. In natural Arabidopsis accessions differing in their performance on media containing immobilized Fe, the amount of secreted fraxetin was highly correlated with growth and Fe and chlorophyll content, indicating that fraxetin secretion is a decisive factor for calcicole-calcifuge behavior (i.e. the ability/inability to thrive on alkaline soils) of plants

    Design of a bionic-inspired exoskeleton robot for lower limb assist

    Get PDF
    The design of an intelligent exoskeleton robot with pneumatic artificial muscles for human lower limb motion assist using electromyography (EMG) is presented. There are four topics addressed in this paper. Decoding electromyography is the first topic. When muscles are active, they produce an electrical activity. EMG is a record of this electrical activity that reflects human’s movement. Through regression analysis a model is obtained to extract motion commands from EMG. It would be an advantage to employ EMG as a control signal for the exoskeleton control. Second, the pneumatic artificial muscle, air muscle for short, is a simple and powerful actuator. When actuated with compressed air, it contracts and provides a pulling force. As a result of its behavior in a similar way to a biological muscle, air muscle is adapted for a bionic actuator of the assist robot. The force models of air muscles are investigated by experiments in a workbench. Third, for the control of a bionic-inspired robot, the multimodal sensory feedback including EMG and inertial sensors is necessary. By using EMG as a force-proportional measurement between human and robot, a control system combined a sensor-fusion approach and a compliant mechanism enables exoskeleton to carry out human-robot collaboration. Finally, a prototype of power-assist exoskeleton robot for lower limb is completed and evaluated by experiments successfully

    Comparing the outcomes of two strategies for colorectal tumor detection: Policy-promoted screening program versus health promotion service

    Get PDF
    AbstractBackgroundThe Taiwanese government has proposed a population-based colorectal tumor detection program for the average-risk population. This study's objectives were to understand the outcomes of these screening policies and to evaluate the effectiveness of the program.MethodsWe compared two databases compiled in one medical center. The “policy-promoted cancer screening” (PPS) database was built on the basis of the policy of the Taiwan Bureau of National Health Insurance for cancer screening. The “health promotion service” (HPS) database was built to provide health check-ups for self-paid volunteers. Both the PPS and HPS databases employ the immunochemical fecal occult blood test (iFOBT) and colonoscopy for colorectal tumor screening using different strategies. A comparison of outcomes between the PPS and HPS included: (1) quality indicators—compliance rate, cecum reaching rate, and tumor detection rate; and (2) validity indicators—sensitivity, specificity, positive, and negative predictive values for detecting colorectal neoplasms.ResultsA total of 10,563 and 1481 individuals were enrolled in PPS and HPS, respectively. Among quality indicators, there was no statistically significant difference in the cecum reaching rate between PPS and HPS. The compliance rates were 56.1% for PPS and 91.8% for HPS (p < 0.001). The advanced adenoma detection rates of PPS and HPS were 1.0% and 3.6%, respectively (p < 0.01). The carcinoma detection rates were 0.3% and 0.4%, respectively (p = 0.59). For validity indicators, PPS provides only a positive predictive value for colorectal tumor detection. HPS provides additional validity indicators, including sensitivity, specificity, positive predictive value, and negative predictive value, for colorectal tumor screening.ConclusionIn comparison with the outcomes of the HPS database, the screening efficacy of the PPS database is even for detecting colorectal carcinoma but is limited in detecting advanced adenoma. HPS may provide comprehensive validity indicators and will be helpful in adjusting current policies for improving screening performance

    Suppressing Decoherence in Quantum Plasmonic Systems by Spectral Hole Burning Effect

    Full text link
    Quantum plasmonic systems suffer from significant decoherence due to the intrinsically large dissipative and radiative dampings. Based on our quantum simulations via a quantum tensor network algorithm, we numerically demonstrate the mitigation of this restrictive drawback by hybridizing a plasmonic nanocavity with an emitter ensemble with inhomogeneously-broadened transition frequencies. By burning two narrow spectral holes in the spectral density of the emitter ensemble, the coherent time of Rabi oscillation for the hybrid system is increased tenfold. With the suppressed decoherence, we move one step further in bringing plasmonic systems into practical quantum applications

    Reversine suppresses oral squamous cell carcinoma via cell cycle arrest and concomitantly apoptosis and autophagy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effective therapies for oral cancer patients of stage III and IV are generally surgical excision and radiation combined with adjuvant chemotherapy using 5-Fu and Cisplatin. However, the five-year survival rate is still less than 30% in Taiwan. Therefore, evaluation of effective drugs for oral cancer treatment is an important issue. Many studies indicated that aurora kinases (A, B and C) were potential targets for cancer therapies. Reversine was proved to be a novel aurora kinases inhibitor with lower toxicity recently. In this study, the potentiality for reversine as an anticancer agent in oral squamous cell carcinoma (OSCC) was evaluated.</p> <p>Methods</p> <p>Effects of reversine on cell growth, cell cycle progress, apoptosis, and autophagy were evaluated mainly by cell counting, flow cytometry, immunoblot, and immunofluorescence.</p> <p>Results</p> <p>The results demonstrated that reversine significantly suppressed the proliferation of two OSCC cell lines (OC2 and OCSL) and markedly rendered cell cycle arrest at G2/M stage. Reversine also induced cell death via both caspase-dependent and -independent apoptosis. In addition, reversine could inhibit Akt/mTORC1 signaling pathway, accounting for its ability to induce autophagy.</p> <p>Conclusions</p> <p>Taken together, reversine suppresses growth of OSCC via multiple mechanisms, which may be a unique advantage for developing novel therapeutic regimens for treatment of oral cancer in the future.</p
    • 

    corecore