11,686 research outputs found

    Superspace Formulation in a Three-Algebra Approach to D=3, N=4,5 Superconformal Chern-Simons Matter Theories

    Full text link
    We present a superspace formulation of the D=3, N=4,5 superconformal Chern-Simons Matter theories, with matter supermultiplets valued in a symplectic 3-algebra. We first construct an N=1 superconformal action, and then generalize a method used by Gaitto and Witten to enhance the supersymmetry from N=1 to N=5. By decomposing the N=5 supermultiplets and the symplectic 3-algebra properly and proposing a new super-potential term, we construct the N=4 superconformal Chern-Simons matter theories in terms of two sets of generators of a (quaternion) symplectic 3-algebra. The N=4 theories can also be derived by requiring that the supersymmetry transformations are closed on-shell. The relationship between the 3-algebras, Lie superalgebras, Lie algebras and embedding tensors (proposed in [E. A. Bergshoeff, O. Hohm, D. Roest, H. Samtleben, and E. Sezgin, J. High Energy Phys. 09 (2008) 101.]) is also clarified. The general N=4,5 superconformal Chern-Simons matter theories in terms of ordinary Lie algebras can be rederived in our 3-algebra approach. All known N=4,5 superconformal Chern-Simons matter theories can be recovered in the present superspace formulation for super-Lie-algebra realization of symplectic 3-algebras.Comment: 37 pages, minor changes, published in PR

    New physics effects on top quark spin correlation and polarization at the LHC: a comparative study in different models

    Full text link
    Extensions of the Standard Model often predict new chiral interactions for top quark, which will contribute to top quark spin correlation and polarization in ttˉt\bar{t} production at the LHC. In this work, under the constraints from the current Tevatron measurements, a comparative study of the spin correlation and polarization is performed in three new physics models: the minimal supersymmetric model without R-parity (RPV-MSSM), the third-generation enhanced left-right model and the axigluon model. We find that the polarization asymmetry may be enhanced to the accessible level in all these models while the correction to the spin correlation may be detectable in the axigluon model and the RPV-MSSM with λ"\lambda" couplings.Comment: Version in PRD (figs updated and discussions added

    Gaussian-shaped Optical Frequency Comb Generation for Microwave Photonic Filtering

    Get PDF
    Using only electro-optic modulators, we generate a 41-line 10-GHz Gaussian-shaped optical frequency comb. We use this comb to demonstrate apodized microwave photonic filters with greater than 43-dB sidelobe suppression without the need for a pulse shaper.Comment: 3 pages, 4 figure

    The First Calculation for the Mass of the Ground 4++4^{++} Glueball State on Lattice

    Get PDF
    Under the quenched approximation, we perform a lattice calculation for the mass of the ground 4++4^{++} glueball state in E++E^{++} channel on a D=3+1D=3+1 lattice. Our calculation shows that the mass of this state is MG(4++)=3.65(6)(18)GeVM_G(4^{++})=3.65(6)(18)GeV, which rules out the 4++4^{++} or mainly 4++4^{++} glueball interpretation for ξ(2230)\xi(2230).Comment: 10 pages and 1 figur

    The black hole fundamental plane from a uniform sample of radio and X-ray emitting broad line AGNs

    Full text link
    We derived the black hole fundamental plane relationship among the 1.4GHz radio luminosity (L_r), 0.1-2.4keV X-ray luminosity (L_X), and black hole mass (M) from a uniform broad line SDSS AGN sample including both radio loud and radio quiet X-ray emitting sources. We found in our sample that the fundamental plane relation has a very weak dependence on the black hole mass, and a tight correlation also exists between the Eddington luminosity scaled X-ray and radio luminosities for the radio quiet subsample. Additionally, we noticed that the radio quiet and radio loud AGNs have different power-law slopes in the radio--X-ray non-linear relationship. The radio loud sample displays a slope of 1.39, which seems consistent with the jet dominated X-ray model. However, it may also be partly due to the relativistic beaming effect. For radio quiet sample the slope of the radio--X-ray relationship is about 0.85, which is possibly consistent with the theoretical prediction from the accretion flow dominated X-ray model. We briefly discuss the reason why our derived relationship is different from some previous works and expect the future spectral studies in radio and X-ray bands on individual sources in our sample to confirm our result.Comment: 23 pages, 7 figures, ApJ accepte

    Real-time Intravascular Photoacoustics

    Get PDF
    The rupture of vulnerable atherosclerotic plaque is the most frequent cause of acute cardiovascular events and sudden cardiac deaths. The identification of the vulnerable plaque, which is believed to be related to the structure and composition of the plaque, can greatly benefit the management of the cardiovascular disease in clinics. Intravascular photoacoustic (IVPA) imaging can characterize the composition of the plaque based on the optical contrast between different tissue types, which can be easily applied by performing IVPA imaging at different wavelengths for different imaging targets. Combined IVPA/US imaging shows great potentials to image the vulnerable atherosclerotic plaque, morphologically (co-registered IVUS image) and compositionally (especially lipid-rich plaque), and is becoming a powerful tool to guide the assessment and treatment of the atherosclerotic plaque lesions. The aim of this thesis is to develop a prototype of fast IVPA/US imaging system capable of performing in vivo experiments on swine model, accelerating the translation of IVPA/US imaging toward clinical application

    Persistent spin current in mesoscopic ferrimagnetic spin ring

    Full text link
    Using a semiclassical approach, we study the persistent magnetization current of a mesoscopic ferrimagnetic ring in a nonuniform magnetic field. At zero temperature, there exists persistent spin current because of the quantum fluctuation of magnons, similar to the case of an antiferromagnetic spin ring. At low temperature, the current shows activation behavior because of the field-induced gap. At higher temperature, the magnitude of the spin current is proportional to temperature T, similar to the reported result of a ferromagnetic spin ring.Comment: 6 pages, 3 figures, one more reference adde

    Relative entropy of entanglement of a kind of two qubit entangled states

    Full text link
    We in this paper strictly prove that some block diagonalizable two qubit entangled state with six none zero elements reaches its quantum relative entropy entanglement by the a separable state having the same matrix structure. The entangled state comprises local filtering result state as a special case.Comment: 5 page
    corecore