713 research outputs found

    Cadmium burden and the risk and phenotype of prostate cancer

    Get PDF
    © 2009 Chen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Long-term culture captures injury-repair cycles of colonic stem cells

    Get PDF
    The colonic epithelium can undergo multiple rounds of damage and repair, often in response to excessive inflammation. The responsive stem cell that mediates this process is unclear, in part because of a lack of in vitro models that recapitulate key epithelial changes that occur in vivo during damage and repair. Here, we identify a Hop

    Nuclear Receptor Interaction Protein (NRIP) expression assay using human tissue microarray and immunohistochemistry technology confirming nuclear localization

    Get PDF
    Background: A novel human nuclear receptor interaction protein (NRIP) has recently been discovered by Chen SL et al , which may play a role in enhancing the transcriptional activity of steroid nuclear receptors in prostate (LNCaP) and cervical (C33A) cancer cell lines. However, knowledge about the biological functions and clinical implications of NRIP, is still incomplete. Our aim was to determine the distribution of NRIP expression and to delineate the cell types that express NRIP in various malignant tumors and healthy non-pathological tissues. This information will significantly affect the exploration of its physiological roles in healthy and tumor cells. Methods: By using tissue microarray (TMA) technology and an anti-NRIP monoclonal antibody immunohistochemical (IHC) survey, NRIP expression was examined in 48 types of tumors and in a control group of 48 matched or unmatched healthy non-neoplastic tissues. Results: Our survey results showed that ten cases were revealed to express the NRIP in six malignancies (esophageal , colon, breast, ovarian, skin, and pancreatic cancers), but not all of these specific tumor types consistently showed positive NRIP expression. Moreover, malignant tumors of the stomach, prostate, liver, lung, kidney, uterine cervix, urinary bladder, lymph node, testis, and tongue revealed no NRIP expression. Among the control group of 48 matched and unmatched nonneoplastic tissues, all of them demonstrated IHC scores less than the cut-off threshold of 3. In addition , ten cores out of thirty-six carcinomatous tissues revealed positive NRIP expression, which indicated that NRIP expression increases significantly in carcinoma tissue cores , comparing to the matched controlled healthy tissues. Conclusion: This is the first study to use a human TMA and IHC to validate the nuclear localization for this newly identified NRIP expression. In considering the use of NRIP as a potential diagnostic tool for human malignancies survey , it is important to note that NRIP expression carries a sensitivity of only 23%, but has a specificity of 100%. There is also a significant difference in positive NRIP expression between primary carcinomatous tissues and matched controlled healthy tissues. Although further large-scale studies will merit to be conducted to evaluate its role as a potential adjunct for cancer diagnosis, data from this study provides valuable references for the future investigation of the biological functions of NRIP in humans

    Quantification and recognition of parkinsonian gait from monocular video imaging using kernel-based principal component analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The computer-aided identification of specific gait patterns is an important issue in the assessment of Parkinson's disease (PD). In this study, a computer vision-based gait analysis approach is developed to assist the clinical assessments of PD with kernel-based principal component analysis (KPCA).</p> <p>Method</p> <p>Twelve PD patients and twelve healthy adults with no neurological history or motor disorders within the past six months were recruited and separated according to their "Non-PD", "Drug-On", and "Drug-Off" states. The participants were asked to wear light-colored clothing and perform three walking trials through a corridor decorated with a navy curtain at their natural pace. The participants' gait performance during the steady-state walking period was captured by a digital camera for gait analysis. The collected walking image frames were then transformed into binary silhouettes for noise reduction and compression. Using the developed KPCA-based method, the features within the binary silhouettes can be extracted to quantitatively determine the gait cycle time, stride length, walking velocity, and cadence.</p> <p>Results and Discussion</p> <p>The KPCA-based method uses a feature-extraction approach, which was verified to be more effective than traditional image area and principal component analysis (PCA) approaches in classifying "Non-PD" controls and "Drug-Off/On" PD patients. Encouragingly, this method has a high accuracy rate, 80.51%, for recognizing different gaits. Quantitative gait parameters are obtained, and the power spectrums of the patients' gaits are analyzed. We show that that the slow and irregular actions of PD patients during walking tend to transfer some of the power from the main lobe frequency to a lower frequency band. Our results indicate the feasibility of using gait performance to evaluate the motor function of patients with PD.</p> <p>Conclusion</p> <p>This KPCA-based method requires only a digital camera and a decorated corridor setup. The ease of use and installation of the current method provides clinicians and researchers a low cost solution to monitor the progression of and the treatment to PD. In summary, the proposed method provides an alternative to perform gait analysis for patients with PD.</p

    Combining microscopic and macroscopic probes to untangle the single-ion anisotropy and exchange energies in an S=1 quantum antiferromagnet

    Get PDF
    The magnetic ground state of the quasi-one-dimensional spin-1 antiferromagnetic chain is sensitive to the relative sizes of the single-ion anisotropy (D) and the intrachain (J) and interchain (J') exchange interactions. The ratios D/J and J'/J dictate the material's placement in one of three competing phases: a Haldane gapped phase, a quantum paramagnet and an XY-ordered state, with a quantum critical point at their junction. We have identified [Ni(HF)2(pyz)_2]SbF6, where pyz = pyrazine, as a rare candidate in which this behavior can be explored in detail. Combining neutron scattering (elastic and inelastic) in applied magnetic fields of up to 10~tesla and magnetization measurements in fields of up to 60~tesla with numerical modeling of experimental observables, we are able to obtain accurate values of all of the parameters of the Hamiltonian [D = 13.3(1)~K, J = 10.4(3)~K and J' = 1.4(2)~K], despite the polycrystalline nature of the sample. Density-functional theory calculations result in similar couplings (J = 9.2~K, J' = 1.8~K) and predict that the majority of the total spin population resides on the Ni(II) ion, while the remaining spin density is delocalized over both ligand types. The general procedures outlined in this paper permit phase boundaries and quantum-critical points to be explored in anisotropic systems for which single crystals are as yet unavailable
    corecore