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ARTICLE

Spatially interacting phosphorylation sites and
mutations in cancer
Kuan-lin Huang 1✉, Adam D. Scott2, Daniel Cui Zhou 2, Liang-Bo Wang 2, Amila Weerasinghe 2,

Abdulkadir Elmas 1, Ruiyang Liu2, Yige Wu2, Michael C. Wendl2, Matthew A. Wyczalkowski 2,

Jessika Baral2, Sohini Sengupta2, Chin-Wen Lai3, Kelly Ruggles4, Samuel H. Payne 5, Benjamin Raphael6,

David Fenyö 4, Ken Chen 7, Gordon Mills 8 & Li Ding2✉

Advances in mass-spectrometry have generated increasingly large-scale proteomics datasets

containing tens of thousands of phosphorylation sites (phosphosites) that require prior-

itization. We develop a bioinformatics tool called HotPho and systematically discover 3D co-

clustering of phosphosites and cancer mutations on protein structures. HotPho identifies

474 such hybrid clusters containing 1255 co-clustering phosphosites, including RET p.S904/

Y928, the conserved HRAS/KRAS p.Y96, and IDH1 p.Y139/IDH2 p.Y179 that are adjacent to

recurrent mutations on protein structures not found by linear proximity approaches. Hybrid

clusters, enriched in histone and kinase domains, frequently include expression-associated

mutations experimentally shown as activating and conferring genetic dependency. Approxi-

mately 300 co-clustering phosphosites are verified in patient samples of 5 cancer types or

previously implicated in cancer, including CTNNB1 p.S29/Y30, EGFR p.S720, MAPK1 p.S142,

and PTPN12 p.S275. In summary, systematic 3D clustering analysis highlights nearly 3,000

likely functional mutations and over 1000 cancer phosphosites for downstream investigation

and evaluation of potential clinical relevance.
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Dysregulated phosphorylation of oncogenic proteins alters
pathway activity and contributes to tumor phenotypes1,2.
Recent advances in mass-spectrometry have generated

increasingly large-scale proteomics datasets in multiple cancer
types3,4, each containing tens of thousands of phosphosites that
urgently require prioritization. Missense somatic mutations and
phosphorylations, independently or through mutual interactions,
can affect the physicochemical properties of the residue side
chains and modulate protein functions or stability in oncogenic
pathways. Thus far, mutation and phosphorylation have been
largely studied in isolation by genomics and proteomics
approaches. Integrated methodologies are required to reveal their
interactions and prioritize both types of events with functional
significance.

Previous works highlighted the potential functionality of muta-
tions that are linearly adjacent to phosphosites in cancer driver
genes5–7, yet these studies did not consider the 3-dimensional
structures of proteins. We and others previously demonstrated
that mutations in cancer genes form 3-dimensional (3D) spatial
clusters—defined by high local concentrations of mutations on
protein structures—enriched for functional missense mutations8–10.
We hypothesize that co-clustering mutations and phosphosites
in spatial hotspots will also enrich for functional events of both
categories. Systematic analyses of mutations from sequencing
data and phosphosites from global proteomics data will enable
us to investigate beyond currently-interrogated phosphosites
with available targeting antibodies and reveal functionalities of
phosphosites.

Here, we report on the development and application of a
bioinformatics tool called HotPho to systematically discover
spatial interactions of mutations and phosphosites. We find
474 significant hybrid clusters (defined as clusters containing
both co-clustering phosphosites and mutations) that prioritize
1255 phosphosites and 2938 mutations on protein structures
from large-scale proteomics and genomics data. Many co-
clustering mutations are associated with high functional scores,
expression changes, and known recurrent/activating events that
expose genetic dependency; whereas many co-clustering phos-
phosites are found in kinase domains and verified in primary
tumor samples. We specifically prioritize phosphosites co-
clustering with activating mutations of BRAF, EGFR, and
PIK3CA. Collectively, our approach of 3D spatial clustering on
protein structures systematically highlights likely functional
mutations and phosphosites for downstream investigation.

Results
HotPho algorithm and performance. Extending beyond the ori-
ginating framework of an earlier mutation-clustering tool we devel-
oped, namely HotSpot3D8, HotPho enables investigation of proximal
and structural information of phosphosites with their neighboring
mutations and domains, both on a single protein structure or co-
crystallized binding partners in a protein complex (Fig. 1). Briefly, all
missense variants and phosphosites are considered as nodes and their
3D distances as edges on an undirected graph and the clusters are
built up using the Floyd–Warshall shortest-paths algorithm imple-
mented by HotSpot3D8 (“Methods”).

We demonstrated the capability of HotPho for identifying co-
clustering cancer mutations and phosphosites using data comprising
225,151 unique phosphosites from PTMcosmos compiled from
multiple databases and CPTAC cancer proteomic cohorts3,4

(“Methods”). We also included 791,489 missense mutations from
9062 samples across 33 cancer types from a filtered set of Multi-
Center Mutation Calling in Multiple Cancers project (MC3)
mutation calls from the TCGA PanCanAtlas11, taken in account
their recurrence in the MC3 cohort. Both mutations and

phosphosites are mapped by HotPho and analyzed based on 5950
processed human proteins from UniProt12 having at least one PDB
structure.

To assess whether the co-clustering between aforementioned sets
of mutations and phosphosites is non-random, we analyzed the
clusters against a set of permutated data as follows: the original
mutation backbone was maintained while phosphosites were
randomly populated 100 times, keeping the corresponding ratios of
residue types of phosphosites constant (“Methods”). We found a
higher fraction of hybrid clusters in the original HotPho output
(8.1%) at the top 5% of the cluster closeness score compared to the
null distribution from the permutations (Fig. 1). We defined the
criteria of high-confidence clusters to have cluster closeness scores
within the top 5% of their respective cluster types and subsequently
limited our analyses to these clusters. In hybrid clusters, the 5%
sensitivity corresponded to 97.4% specificity in a receiver operating
characteristic (ROC) curve analysis (AUC= 0.58, Supplementary
Fig. 1A).

We conducted a multitude of analyses to investigate the
modality in the score distribution and the implication of using the
5% threshold. First, while this threshold (cluster closeness score
= 2.56) may permit false-positives if the simulated phosphosites
only contain negatives, we observed many of the clusters
containing activating or recurrent mutations with cluster
closeness scores close to the threshold (Supplementary Data 1).
It is possible that the spatial distribution of cancer mutations and
commonly phosphorylated amino acid residues (i.e., serine,
threonine, and tyrosine) is not random and thus retaining
additional hybrid clusters is needed to minimize false-negatives.
Second, to resolve possible reasons underlying the multi-modal
distribution of cluster closeness scores, we compared the score
distributions for 299 mutation-enriched cancer driver genes13

versus other genes. While hybrid clusters involving driver genes
showed a higher density at the higher-score mode, driver gene
status did not guarantee high scores (Supplementary Fig. 1B). The
5% score threshold showed a sensitivity= 0.17 and specificity=
96.0% in distinguishing hybrid clusters with driver genes
(Supplementary Fig. 1C). Finally, we examined the score
distribution using 200 bins on both the simulated vs. observed
clusters, finding multiple peaks and alternative thresholds, for
example, thresholding using one of the higher local minima
retained only the top 2.28%, or the top 216 clusters (Supplemen-
tary Fig. 1D). Cluster closeness scores for all identified clusters are
provided herein to prioritize a more stringent set of clusters
(Supplementary Data 1).

Co-clustering of phosphosites and mutations using HotPho.
HotPho generated a final high-confidence set of 906 mutation-
only, 127 phosphosite-only, and 474 hybrid clusters based on the
top 5% cluster closeness score threshold (“Methods”, Supple-
mentary Data 1). Top genes harboring each type of cluster varied
(Fig. 2a): MGAM, SI, ERBB3, and LRRC4C each had at least 9
mutation-only clusters and such type of clusters have been pre-
viously characterized8–10. Phosphosite-only clusters are found in
fewer instances: ANXA5, CLIP1, FLNB, GPI, HSPD1, PEBP1,
and PTK2 each harbored two (Supplementary Fig. 2A).

For subsequent analyses, we focused on investigating hybrid
clusters found across 474 unique proteins (some proteins
only form hybrid clusters with their protein complex partners).
Notably, the highest counts of hybrid clusters were found
for genes known for recurrent mutations, including TP53
(10 hybrid clusters), PIK3CA (8), CTNNB1 (6), EGFR (6), and
other genes involved in cancers, such as HIST1H2BC (6)
and PLG (5) (Fig. 2a). These clusters comprise a total of
1255 phosphosites and 2938 mutations. The composition of
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Fig. 1 HotPho workflow and performance benchmarks. a HotPho takes user-provided lists of mutations and phosphosites as inputs, map them onto PDB
protein structures, calculates each of the pairwise distances, conducts clustering, and reports clusters with prioritized mutations and phosphosites. b Comparison of
HotPho results measured using phosphosite and MC3 cancer mutation data vs. simulated data of randomly distributed phosphosites. The left panel indicates the
density of cluster closeness (CC) scores for all hybrid clusters in the HotPho run and the simulated runs, where the vertical line indicates the top 5% score
threshold. The right panel shows the bar plot comparing the number of hybrid clusters passing the same 5% threshold in the HotPho and simulated runs.
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co-clustered phosphosites differs across gene products; co-
clustered tyrosines are most commonly observed in PIK3CA
and EGFR kinases, whereas serines are most common in
HIST1H2BC and HBG2 (Fig. 2a). The top hybrid clusters of
each protein—identified by the highest cluster closeness score—
may span mutations and phosphosites that are far from one
another in the linear distance (Fig. 2c, Supplementary Fig. 2B).
Phosphosites prioritized in these clusters include CTNNB1 p.T40,
EGFR p.T290, ERBB2 p.T733/T759, KIT p.Y578, and TP53
p.T284. We also compared the mutations in the hybrid clusters to
those found in a clustering analysis using only TCGA MC3
mutations, which contained 9403 clustered mutations. Among
the 2938 mutations found in the 474 hybrid clusters, we found
only 48 mutations not found by mutation-only clustering. The list
of 48 mutations contained mutations of interest in PDE1B (5
mutations), SRSF7 (4 mutations), and PTPN12 p.S275F/C that

co-localized with p.S275 and co-clustered with p.S39/p.T40
(Supplementary Data 2).

Among the 1,255 co-clustered phosphosites, 291 sites directly
overlap and 356 sites are proximal (within 2 amino acid residues
linearly) to their co-clustered mutations (Supplementary Data 1,
Fig. 2b). The HotPho co-clustering analysis adds a substantial
count of 608 phosphosites which are distant in terms of a linear
sequence, yet close in 3D protein structure, including the majority
of the sites found on ACTB, HIST1H2BC, and ERBB2. Nearly
half of the clusters we identified can only be found by integrating
3D protein structure, demonstrating the added value of 3D
approaches for the discovery of spatial relationships between
mutations and phosphosites.

We then examined whether proteins containing hybrid
clusters are enriched in specific biological pathways curated
by WikiPathways14 and the NCI-Nature Pathway Interaction
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Fig. 2 Hybrid clusters containing both phosphosites and mutations. a Left shows the counts of hybrid clusters, mutation-only clusters, and site-only
clusters in genes with at least two hybrid clusters. Right barplot shows counts of each type of phospho-residue, being serine (S), threonine (T), tyrosine
(Y), or Arginine (R), found in hybrid clusters for each of the genes. b Spatial interactions of co-clustered mutations and phosphosites. For each of the genes,
we counted how many of the co-clustered mutations and phosphosites are also directly overlapping (Direct) or within 2 amino acid residues (Proximal),
and without any of these apparent linear relationships (Clustered) to phosphosites and mutations, respectively, in the same hybrid clusters. c Phosphosite
and mutations on the linear protein coordinate of top hybrid clusters as defined by cluster closeness scores in each of the highlighted genes (excluding
HIST1H4G and H3F3A due to their top hybrid clusters included phosphosites from other proteins and excluding MGAM due to its top clusters located at
residue coordinate beyond the plotted range [centroid at 1514]). The Ensembl transcripts used for mapping of the protein coordinates are described in
Supplementary Data 1.
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Database15 using Enrichr16 (Supplementary Data 3, Supplemen-
tary Fig. 3, “Methods”). The most enriched NCI-Nature pathways
include PDGFR-beta, ErbB2/ErbB3, ErbB1, hepatocyte growth
factor receptor (c-Met), SHP2, Fc-epsilon receptor I, and mTOR
signaling pathways (Fisher’s exact test, adjusted P < 1E−12),
which is reaffirmed by the Focal Adhesion-PI3K–Akt–mTOR-
signaling pathway being one of the top enriched WikiPathways
(adjusted P= 8.8E−16). These findings suggest the possible
involvement of hybrid clusters and co-clustering phosphosites in
oncogenic signaling pathways.

We further hypothesized that hybrid clusters would be
enriched in functional domains related to oncogenic processes17.
Mapping residues to PFAM domains, we identified 26 PFAM
domains significantly enriched for mutations and phosphosites in
hybrid clusters when comparing to the background of all mapped
mutations and phosphosites (Supplementary Data 4, Supplemen-
tary Fig. 3, “Methods”). Domains of histone proteins, including
centromere protein Scm3, core histone H2A/H2B/H3/H4, and
centromere kinetochore component CENP-T histone fold showed
the most significant enrichment (Fisher’s exact test, FDR ≤ 1.53E
−43). Another two top PFAM domains are protein tyrosine
kinase and protein kinase domains (Supplementary Fig. 3).
Specifically, we identified hybrid clusters in tyrosine kinase
domains of tyrosine kinases (TK), such as MET, FGFR2/3, and
ERBB2/3, and in BRAF of the tyrosine kinase-like (TKL) group.
Other hybrid clusters involving sites at protein kinase domains
included TGFBR1 of the TKL group, MAP2K4 of the STE group,
and AKT1/2 of the AGC group. Notably, some kinase-domain
clusters showed conserved mutation/phosphosite patterns across
homologs, such as FGFR2 and FGFR3 (Supplementary Fig. 3).

Co-clustering phosphosites adjacent to known activating
mutations. To prioritize candidate phosphosites, we first inves-
tigated phosphosites co-clustering with known functional
cancer mutations. We curated experimentally validated mutations
from the Cancer Biomarkers database with Cancer Genome
Interpreter18, OncoKB19, and KinDriver20, collecting a total of
367 activating mutations (“Methods”). We found 29 hybrid
clusters containing 90 of these activating mutations in 17 genes,
suggesting the functional relevance of the 54 co-clustering
phosphosites (Supplementary Data 5). PIK3CA and EGFR are
each involved in 4 hybrid clusters containing activating mutations
and such clusters are also found in CTNNB1 (3), KIT (3), BRAF
(2), ERBB2 (2), KRAS (2), MET (2), and NRAS (2).

Phosphosites co-clustering with activating mutations are likely
of functional relevance. We specifically examined these clusters
on protein structures (Fig. 3b, Supplementary Fig. 5). Both
ERBB2 p.T733 and p.T759 are located adjacently to the activating
mutation p.L755W. NRAS phosphosite p.Y64 is co-clustered with
two of the most recurrently mutated residues p.G12 and p.Q61.
Receptor tyrosine kinases, KIT, MET, and RET all harbor
phosphorylated tyrosine sites co-clustering with activating
mutations. These prioritized phosphosites include KIT p.Y578,
MET p.Y1093/Y1159/Y1230, and RET p.Y928. Two hybrid
clusters containing activating mutations were found on a protein
complex formed by PIK3CA/PIK3R1: PIK3R1 phospho-tyrosines
p.Y470 and p.Y556 clustered with activating mutations PIK3CA
p.N344G/M, p.N345K, p.C420R, and PIK3R1 p.N564D. In the
other hybrid cluster, PIK3R1 p.T463 clustered with activating
mutations PIK3CA p.E453K/Q. The co-clustering phosphosites
next to known activating mutations are promising targets for
further investigation, along with their adjacent mutations.

We hypothesized that phosphosites co-clustering with highly-
recurrent mutations in a cancer cohort might imply functionality
in the specific cancer type. We calculated the frequency of each of

the co-clustering mutations within each of the TCGA cancer
cohorts and identified their spatially adjacent phosphosites
(Supplementary Data 6). We found that co-clustering phospho-
sites of the most recurrent mutations aggregate in proteins,
including CTNNB1, HRAS, IDH1, KRAS, NRAS, PIK3CA,
and TP53 (Fig. 3a, Supplementary Fig. 5). In PIK3CA, we
identified p.T957 co-clustering with the highly recurrent p.
H1047R that affects many gynecologic cancer cases, including
13.8% of breast invasive carcinoma (BRCA), 7% of uterine
carcinosarcoma (UCS), and 5.8% of uterine corpus endometrial
carcinoma (UCEC). In TP53, phosphosites p.R249 and p.T284
co-cluster with p.R273C/H that affects 11.4% of brain lower-
grade glioma (LGG), 5.3% of UCS, and 3.8% of esophageal
carcinoma (ESCA); TP53 p.T155 and P.S183 co-cluster with p.
R175H that affects 8.3% of rectum adenocarcinoma (READ),
6.3% of colon adenocarcinoma (COAD), 6% of ESCA, 3.7% of
ovarian serous cystadenocarcinoma (OV), and 3.5% of UCS.

Many phosphosites co-clustering with recurrent mutations
were found in protein homologs. IDH1 phosphosites p.Y135 and
p.Y139 co-clustered with p.R132H, which is highly recurrent in
brain tumors (73.6% of LGG and 6.1% of glioblastoma multi-
forme [GBM]), as well as p.R132C implicated in several cancer
types (17.1% of cholangiocarcinoma [CHOL], 4.3% of acute
myeloid leukemia [LAML], 3.4% of LGG, and 3.2% of skin
cutaneous melanoma [SKCM]). In its homolog protein IDH2,
p.Y179 co-clustered with p.R140Q affecting 6.5% of LAML
(Fig. 3). For the Ras proteins, KRAS/HRAS/NRAS all harbor
highly recurrent mutations for residues p.G12/G13 that affect
large fractions of pancreatic adenocarcinoma (PAAD), COAD,
READ, lung adenocarcinoma (LUAD), and UCEC. Each harbors
overlapping yet distinct sets of co-clustering phosphosites—KRAS
p.S89/p.Y96, NRAS p.Y64, and HRAS p.Y32/T35/Y64/Y96—
warranting further investigation into their potentially shared and
distinct signaling functions across cancer types (Fig. 3).

Functional evidence for co-clustering mutations. We evaluated
whether HotPho can effectively prioritize functional mutations in
hybrid clusters by comparing with functional scores predicted by
VEST21, Mutation Assessor22, PolyPhen223, SIFT24, and a composite
Eigen score composed of all these scores25 (Fig. 4a). Within proteins
harboring hybrid clusters, clustered mutations showed strikingly
higher predicted functional scores compared to other mutations in
the same proteins (Wilcoxon rank-sum test, P < 2.2e−16), support-
ing the view that co-clustered mutations should be prioritized.

To further demonstrate that hybrid clusters enrich for
functional mutations, we examined whether clustered mutations
are associated with the protein or phosphoprotein changes, as
previously found for functional and pathogenic mutations26,27.
Using the TCGA Reverse Phase Protein Arrays (RPPA) dataset
for each of the 33 cancer types, we conducted a differential
expression analysis to search for protein/phosphoprotein markers
expressed at different levels in carriers of clustered mutations
(“Methods”), identifying 24 significant (FDR < 0.05, linear
regression) gene-cancer associations (Fig. 4b, Supplementary
Data 7). TP53 mutations in hybrid clusters are significantly
correlated with higher p53 protein expression in 14 cancer types,
most strikingly in UCEC, BRCA, COAD, and OV, consistent with
the previously reported cis-effect of functional TP53 missense
mutations28. Clustered EGFR mutations are likewise associated
with higher EGFR protein and EGFR p.Y1068 expression in LGG,
GBM, and LUAD, cancer types largely affected by activating
mutations of EGFR. We also found clustered KIT mutations to be
associated with higher c-Kit in TGCT and SKCM (Fig. 5b).

At a single residue level, we noted clustered mutations showing
high protein or phosphoprotein expressions above the 95th
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ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22481-w

6 NATURE COMMUNICATIONS |         (2021) 12:2313 | https://doi.org/10.1038/s41467-021-22481-w | www.nature.com/naturecommunications



Fig. 4 Proteomic effects associated with co-clustered mutations. a Comparison of predicted functional scores, including those provided by Mutation
Assessor, PolyPhen-2, SIFT, VEST, and an eigen score for mutations having different spatial interactions with phosphosites. The interaction types are direct
(directly overlapping), proximal (within 2 residues in the linear distance), clustered (in hybrid clusters), and none of these interactions. b Plot showing
cancer types where the carrier of each gene’s co-clustered mutation is associated with significantly higher or lower expression of the corresponding
protein/phosphoprotein marker in the Reverse Phase Protein Arrays (RPPA) dataset. Each dot represents a gene-cancer association, where color depicts
cancer type and shape shows significance. c Expression percentile of the protein/phosphoprotein marker in carriers of multiple types of mutations (direct,
proximal, clustered, none) in the corresponding genes. Mutations carried by the samples with greater than 97% marker expression are further text-labeled.
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percentile in the same cancer cohort (Fig. 4c). These include
recurrent TP53 mutations p.R248Q/W, p.R273H/C/L, p.R175H,
p.R282W/G, and p.R337C. Top mutations in EGFR differ
between brain and lung tumors: in LGG, EGFR p.R108K, p.
R252C/P, and p.R263I, which are adjacent to the phospho-
threonine p.T290, are associated with high EGFR protein and
phosphoproteins. Many samples with top EGFR expression in
GBM also carry mutations in the same hybrid cluster, p.A289V/T
and p.R252C/P, whereas in LUAD the associated mutation is the
recurrent EGFR p.L858R (4.3% of LUAD) co-clustering with
phosphosites p.Y869 and p.Y891. KIT mutation p.D816V and
p.829P is associated with high c-kit and it clustered with p.Y362
and p.Y823 (Fig. 4c).

To further validate these findings, we conducted similar
analyses of the mutational impact on protein expression using
global proteomics datasets from retrospective and prospective
CPTAC cohorts of breast, ovarian, and colorectal cancers
(2 cohorts/cancer) each comprised of 78–126 samples (“Meth-
ods”, Supplementary Data 8, Supplementary Fig. 6). Given the
limited sample sizes, no associations passed multiple testing
thresholds (FDR < 0.05) and only suggestive associations (Wil-
coxon rank-sum test, P < 0.05) are highlighted herein: we
validated that TP53 co-clustering mutations associated with
higher protein expression in all three cancer types. In colorectal
cancer, KRAS mutations in cluster 9458.0 affecting p.G12, p.G13,
p.V14, and p.Q61 are associated with higher KRAS expression,
whereas HNF4A mutations in cluster 7977.0 are associated with
low HNF4A expression. Other notable findings include that ESR1
mutations in cluster 1357.1 are associated with high ESR1 in
ovarian cancer, whereas AKT1 mutations in cluster 756.0
(Supplementary Fig. 6) are associated with high AKT1 proteins.

Finally, given the potential functionality of co-clustering
mutations, we characterized the mutational landscape across cancer
types in the TCGA MC3 dataset of ~10 thousand tumors11. By
considering missense mutations (1) directly overlapping phospho-
sites, (2) proximal to phosphosites, and (3) co-clustering with
phosphosites, we noticed that considering co-clustering mutations
contribute significantly to the fraction of potentially functional
mutations in many cancer genes including EGFR, KRAS, and
PIK3CA (Supplementary Fig. 7).

Functional verification of co-clustering mutations. We next
tested whether hybrid clusters were enriched for functional
mutations, including those shown to be activating and confer
genetic dependency by cancer cells. To test for activating muta-
tions that confer clonal selection advantages, we assessed
experimental data from 1054 somatic mutations in the Ba/F3 and
MCF10A cells29, including 549 found in genes with hybrid
clusters. Out of the 549 unique somatic mutations, 86 co-
clustered with phosphosites and 463 did not. There was a striking
enrichment of activation in hybrid mutations co-clustering with
phosphosites. For mutations functionally assessed in Ba/F3,
77.6% (66/85) of the co-clustering mutations were determined as
activating compared to only 30.2% (138/457) of the other
mutations determined as activating (One-tailed Fisher’s exact test,
P= 2.66E−16, Fig. 5a). For mutations functionally assessed in
MCF10A, 67.6% (46/68) of the co-clustering mutations were
activating compared to only 35.2% (146/415) of the other
mutations being activating (P= 5.03E−7, Fig. 5b). Collectively 72
co-clustered phosphosites were determined as activating in either
Ba/F3 or MCF10A.

We then examined whether the co-clustered mutations show
significant enrichment of activating mutations compared to the
other mutations on a gene-by-gene basis (Fig. 5a, b, Supplemen-
tary Data 9). Co-clustering mutations of PIK3CA are significantly

enriched for activating events in both cell lines (One-tailed
Fisher’s exact test, P ≤ 1.22E−3), with 33/35 co-clustering
mutations being validated in Ba/F3 and 21/22 in MCF10A; its
binding partner PIK3R1 also shows suggestive enrichment in Ba/
F3 (P= 0.072, 3/3). Significant enrichment of activating muta-
tions was also observed for EGFR (P= 1.63E−4, 10/11) and
BRAF (P= 1.11E−3, 12/18) co-clustering mutations in Ba/F3. In
MCF10A, we also noted suggestive associations for BRAF, where
7/18 co-clustering mutations are activating (P= 0.068), and
ESR1, where 7/18 co-clustering mutations are activating (P=
0.068). The enrichment of activating mutations in hybrid clusters
suggests structural adjacency to phosphosites implies functional
significance in oncogenes.

To evaluate the added predictive power of mutation function-
ality provided by phosphosite co-clustering, we examined the
relationships between mutation functionality versus co-clustering
mutation counts, mutation recurrence, and co-clustering with
phosphosites (Fig. 5c, d). First, using a multivariate logistic
regression model corrected for the mutated gene, we found that
the number of co-clustering mutations was not significantly
associated with the mutation functionality in either the BAF3
(P= 0.91) or MCF (P= 0.40) cell line (Supplementary Fig. 9A).
Second, using a multivariate logistic regression model corrected
for the mutated gene, we found that the recurrence of mutations
in the TCGA MC3 cohort was significantly associated with the
mutation functionality in both the BAF3 (P= 2.8e−3) or
MCF10A (P= 0.023) cell lines. But, when adding the phosphosite
co-clustering status to the regression model, the mutation
functionality was no longer associated with recurrence (P >
0.21), but strongly associated with the co-clustering status in both
BAF3 (P= 1.4e−10) and MCF10A (P= 1.5e−4) cell lines (Fig. 5c,
d, Supplementary Fig. 9A). Altogether, these results suggest that
spatial co-clustering with phosphosites may improve the predic-
tion of mutation functionality beyond the commonly used
mutation recurrence.

Next, we sought to test whether the co-clustered mutations
may confer genetic dependency to the mutated cancer cells. In
this case, cancer cells with co-clustered mutations would show
higher vulnerability in a CRISPR-knockout screen targeting the
mutated genes than cells with other mutations. To test this
hypothesis, we utilized data using characterized by the CRISPR-
knockout screens in the Cancer Dependency Map (DepMap)
project30, where a negative CERES dependency score indicates
genetic dependency of the cancer cell. Within each of the 27
tested lineages, we carried out a Wilcoxon rank-sum test between
the cell lines with co-clustered missense mutations versus those
with other missense mutations (“Methods”). Strikingly, cancer
cell lines with co-clustered mutations showed significantly higher
dependency (or more vulnerability upon genetic knockout) than
those with missenses in 14 lineages (Wilcoxon rank-sum test,
FDR < 0.05), most notably lung, colorectal, skin, pancreas, and
gastric cancer cells (FDR ≤ 3.3E−7, Fig. 5e). We also obtained
similar results when comparing cell lines with co-clustered
missense mutations versus other non-synonymous mutations
(Supplementary Data 10). Overall, these analyses showed that co-
clustered mutations adjacent to phosphosites are enriched for
activating events and highlight the genetic vulnerability of
cancer cells.

Verification of co-clustering phosphosites. To verify co-
clustering phosphosites, we sought evidence of these events
being observed in the CPTAC proteomic cohorts of prospective
primary tumor samples of 123 breast invasive carcinoma (BRCA),
83 ovarian carcinoma (OV), 97 colorectal adenocarcinoma
(CRC), 103 uterine corpus endometrial carcinoma (UCEC), and

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22481-w

8 NATURE COMMUNICATIONS |         (2021) 12:2313 | https://doi.org/10.1038/s41467-021-22481-w | www.nature.com/naturecommunications



C
o−clustered

N
one

AK
T1

BR
AF

EG
FR

ER
BB

2

ES
R

1

ID
H

1

KR
AS

M
AP

2K
1

PI
K3

C
A

PI
K3

R
1

0

10

20

30

0

50

100

C
ou

nt
s

Activating Inactivating Neutral Other

N
one

AK
T1

BR
AF

EG
FR

ER
BB

2

ES
R

1

ID
H

1

KR
AS

M
AP

2K
1

N
R

AS

PI
K3

C
A

PI
K3

R
1

0

5

10

15

20

0

25

50

75

100

125C
ou

nt
s

Ba/F3 MCF10A

C
o−clustered

Mutation Function

***

***

***

***
*

**

6767

4242

AKT1 BRAF EGFR ERBB2 ESR1 IDH1 KRAS MAP2K1 PIK3CA PIK3R1

C
o−

cl
us

te
re

d
N

on
e

C
o−

cl
us

te
re

d
N

on
e

C
o−

cl
us

te
re

d
N

on
e

C
o−

cl
us

te
re

d
N

on
e

C
o−

cl
us

te
re

d
N

on
e

C
o−

cl
us

te
re

d
N

on
e

C
o−

cl
us

te
re

d
N

on
e

C
o−

cl
us

te
re

d
N

on
e

C
o−

cl
us

te
re

d
N

on
e

C
o−

cl
us

te
re

d
N

on
e

1

10

100

Co-clustering status with phosphosites

M
ut

at
io

n 
re

cu
rr

en
ce

 in
 T

C
G

A

AKT1 BRAF EGFR ERBB2 ESR1 IDH1 KRAS MAP2K1 NRAS PIK3CA PIK3R1

C
o−

cl
us

te
re

d
N

on
e

C
o−

cl
us

te
re

d
N

on
e

C
o−

cl
us

te
re

d
N

on
e

C
o−

cl
us

te
re

d
N

on
e

C
o−

cl
us

te
re

d
N

on
e

C
o−

cl
us

te
re

d
N

on
e

C
o−

cl
us

te
re

d
N

on
e

C
o−

cl
us

te
re

d
N

on
e

C
o−

cl
us

te
re

d
N

on
e

C
o−

cl
us

te
re

d
N

on
e

C
o−

cl
us

te
re

d
N

on
e

1

10

100

M
ut

at
io

n 
re

cu
rr

en
ce

 in
 T

C
G

A

Bile Duct Blood Central Nervous
System Colorectal Gastric Lung Ovary Pancreas Skin Uterus

C
oc

lu
st

er
ed

M
is

se
ns

e

N
on

sy
no

ny
m

ou
s

C
oc

lu
st

er
ed

M
is

se
ns

e

N
on

sy
no

ny
m

ou
s

C
oc

lu
st

er
ed

M
is

se
ns

e

N
on

sy
no

ny
m

ou
s

C
oc

lu
st

er
ed

M
is

se
ns

e

N
on

sy
no

n y
m

ou
s

C
oc

lu
st

er
ed

M
is

se
ns

e

N
on

sy
no

n y
m

ou
s

C
oc

lu
st

er
ed

M
is

se
ns

e

N
on

sy
no

ny
m

ou
s

C
oc

lu
st

er
ed

M
is

se
ns

e

N
on

sy
no

n y
m

ou
s

C
oc

lu
st

er
ed

M
is

se
ns

e

N
on

sy
no

ny
m

ou
s

C
oc

lu
st

er
ed

M
is

se
ns

e

N
on

sy
no

ny
m

ou
s

C
oc

lu
st

er
ed

M
is

se
ns

e

N
on

sy
no

n y
m

ou
s

−2

0

2

D
ep

en
de

nc
y

Co-clustering status with phosphosites

Mutation type

a b

c d

e

Fig. 5 Functional assessment of co-clustering mutations. Experimental validation data of co-clustering somatic mutations were extracted from previous
systematic assessments in a Ba/F3 and bMCF10A cell lines29; we evaluated the functionality of 1054 somatic mutations in a cell viability assay, where each of the
evaluated mutations were assessed through one transfected cell colony compared to control cell colonies. The number of activating mutations vs. other types of
mutations in each gene was then calculated for the set of co-clustering mutations adjacent to phosphosites as discovered by HotPho and other non-clustering
mutations. The asterisk indicates the significance of the association (One-tailed Fisher’s exact test, ***P<0.005, ** 0.005 <= p<0.05, * 0.05 <= p <0.1). The
gene products showing significant associations include EGFR (P= 1.63E−4) and BRAF (P= 1.11E−3) co-clustering mutations in Ba/F3, and PIK3CA in Ba/F3 (P=
1.67E−5) and MCF10A (P=0.0012). At a single mutation level, the functional status (color codes) between co-clustered versus other mutations are further shown
for c Ba/F3 and d MCF10A cell lines against the mutation recurrence on the Y-axis, demonstrating the additional predictive power of co-clustering status on
mutation functionality. e Dependency CERES score comparison of cell lines with co-clustered vs. other missense vs. other non-synonomous mutations in the
DepMap CRISPR screen dataset. The 10 lineages with the highest numbers of co-clustered mutations are shown, including cell lines of the bile duct (N= 30),
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41 clear cell renal cell carcinoma (CCRCC). Of the 1255 co-
clustered phosphosites, 259 were detected in at least one of the
5 cohorts (Fig. 6a, Supplementary Data 11). Some phosphosites
may be cancer-type specific: we uniquely observed BRAF p.S467/
Y472 in BRCA and p.S465 in UCEC. For TP53, we uniquely
observed p.S149 in breast cancer versus TP53 p.T150 in ovarian
cancer. Other phosphosites are found in multiple cancer types
(Fig. 6b); for instance, AKT1 p.T308 was seen in both breast and
ovarian cancers. Notably, phosphosites (p.S29/Y30/T40/T41/T42)
near the section-terminus of the CTNNB1 protein were com-
monly seen in breast and ovarian cancers (p.T41 was also
observed in UCEC), and p.S675 was detected in substantial
numbers of samples in all 5 cancers (Fig. 6b). Co-clustering tyr-
osine phosphosites, PIK3R1 p.Y452/556/580, on the other hand,
were observed in endometrial and renal cancer (p.Y580 was also
observed in colorectal cancer). As a cautionary note, given the
different reference samples and mass spectrometry runs for each
cancer cohort, the cancer-specific phosphosites observed herein
require further validation. Nonetheless, the detection of the co-
clustering phosphosites in primary tumor samples further
implicates their functionality in oncogenesis.

Finally, we conducted a systematic literature review of co-
clustering phosphosites regulated or implicated in cancer
(“Methods”), finding 25 unique phosphosites across 18 proteins
that were experimentally linked to cancer (Supplementary
Data 12). These include AKT1 p.T308 and CTNNB1 p.T41
found in CPTAC patient tumors, as well as sites with known
kinase regulations, including EGFR p.S768/Y869/Y1016, ESR1
p.Y537, and TP53 p.S376/378. Other co-clustering phosphosites

showing functionality related to cancer include: MAPK1 p.S142
that was previously shown to be critical to the ERK2 docking
domain and its mutated form p.S142L confers gain-of-function31;
CTCF p.T374 that, along with a few nearby residues, were shown
to be phosphorylated during mitosis and to decrease its DNA-
binding activity32; BRAF p.T599 and p.S602 that are conserved
from C. elegans to mammals and required for activation of the
B-Raf kinase33,34, and RB1 (Rb) p.S567 that is uniquely
phosphorylated by MAPK11 (p38), triggering Rb-Hdm2 interac-
tion and apoptosis35. These findings further validate the
functionality of selected co-clustering phosphosites HotPho
identified and suggest other sites in hybrid clusters may be
prioritized for downstream investigations.

Discussion
We describe the first systematic discovery of co-clustering
mutations and phosphosites on 3D protein structures, a feat
enabled by a bioinformatics tool—HotPho. HotPho successfully
identifies likely functional mutational clusters and phosphosites
in known cancer proteins, including EGFR, KIT, and KRAS/
HRAS/NRAS, many of which are in kinase domains (Fig. 2). Co-
clustering mutations in these clusters have higher predicted
functional scores, increased protein/phosphoprotein levels
(Fig. 4), and are experimentally validated as being functional and
confer genetic dependency by cancer cells (Fig. 5). Concurrently,
co-clustering phosphosites show multiple characteristics sup-
porting their contributions in oncogenesis, including co-
clustering with validated activating and recurrent mutations in
multiple cancer types (Fig. 3) and are detected in patient tumors

Fig. 6 Verification of co-clustering phosphosites in primary tumors. a Verification of co-clustering phosphosites of cancer proteins in patient tumor
samples characterized by the CPTAC prospective projects. Each dot represents the phosphosites being detected in the cancer cohort colored-coded by
cancer type. The size of the dot represents the standard deviation of the phosphosite level in the respective cancer cohort. b Lolliplots showing number of
tumor samples (number in circle) where the co-clustering phosphosites of AKT1, CTNNB1, TP53, and PIK3R1 proteins are detected in each cancer cohort
out of 123 breast invasive carcinoma (BRCA), 83 ovarian carcinoma (OV), 97 colorectal adenocarcinoma (CRC), 103 uterine corpus endometrial carcinoma
(UCEC), and 41 clear cell renal cell carcinoma (CCRCC).
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(Fig. 6). Co-clustering events may represent potential drivers and
therapeutic targets.

Proteomics datasets, such as those generated by CPTAC, are
quantifying increasingly larger numbers of phosphoproteomes in
cancer and other samples. The abundant phosphosites of
unknown significance (PUS) discovered in these datasets high-
light the urgent need for enhanced annotation and prioritization
using approaches like HotPho. There are still significant limita-
tions to identifying functional hybrid clusters, as prioritization
necessarily relies on known mutations or functional domains.
Thus, while we also discovered phosphosite-only clusters, we
cannot yet effectively determine their significance until we
enhance our understanding of functional phosphosites.

Our investigation supports the functional relevance of co-
clustering phosphosites and mutations. For example, we found
that these phosphosites and mutations are enriched in functional
domains of kinases and histones, that co-clustering mutations
tend to be functionally active and confer genetic dependency.
Among the 1255 co-clustering phosphosites, only 25 were pre-
viously known to be associated with cancer (Supplementary
Data 12). Hopefully, the repertoire of characterized phosphosites
will grow rapidly using combinations of high throughput pro-
teomics approaches, systematic in silico analysis, and experi-
mental validation36,37.

More, multiple co-clustering phosphosites were located in
activation loops of kinase proteins, including RET p.S904, MET
p.Y1248, AKT1 p.T308, EGFR p.Y827/869, as well as the
MAPK3-regulated site MAPK8 p.Y185. Crystal structures
revealed that PTPN12 p.S275 is found in the Q loop that con-
stitutes the pY+1 pocket demonstrating strong substrate speci-
ficity, and the phospho-inhibitory mutant p.S275A significantly
decreased the activity of PTPN12 toward all three HER2
phospho-peptides38. Notably, this site also harbored a rare
mutation p.S275C in the TCGA MC3 mutation data, which only
showed clusters when leveraging the adjacent phosphosite
information but was not found in the mutation-only clusters.

Spatially co-clustering phosphosites and mutations may inter-
act and exhibit further associations in patient samples. Currently,
we only observed a handful of examples where a single tumor
sample carries both of the co-clustering phosphosites and
mutations in existing quantitative phosphoproteomics cohorts,
precluding systematic investigations of their correlative relation-
ships (Supplementary Fig. 9). The growing cohort size of CPTAC
and other cancer global phosphoproteomic datasets will likely
enable us to test the intriguing hypothesis that samples carrying
mutations will show disrupted regulation or mutual exclusivity of
a co-clustering phosphosite with sufficient statistical power.

In conclusion, we conduct a large-scale spatial clustering
analysis between 225,151 phosphosites and 791,637 missense
mutations using the HotPho tool. The resulting 474 hybrid
clusters help us discover 1255 phosphosites co-clustering with
mutations in human cancer, dozens of which are adjacent to
activating mutations and verified in patient tumor samples. Our
approach nominates phosphosites of likely functional significance
for experimental validation and may be expanded to investigate
other post-translational modifications, such as acetylation and
glycosylation.

Methods
Data sources
Phosphosites data. We gathered 225,151 human phosphorylation sites from
PTMcosmos, following a procedure similar to our recently published study39. PTM
sites from PTMcosmos were retrieved from UniProt Knowledge Base (UniProtKB)
version 2018.01, PhosphoSitePlus (snapshot on the date 2018–02–14), and
CPTAC2 MS phosphoproteome data. A PTM site was included if it satisfied either
of the following: (1) included in UniProtKB and was reported in at least one
publication or by sequence similarity. (2) included in PhosphoSitePlus and was

reported in at least one publication or validated internally by Cell Signaling
Technology. (3) included in CPTAC2 experiments and was detected in at least one
of the samples. To match phosphosites between multiple databases, we used
transvar40 to map amino acid residues on different protein isoforms to their unique
genomic positions.

Somatic mutation data. We used somatic mutations from the TCGA cohort as
provided by the publicly-available MC311 mutation annotation file (MAF)
(syn7824274). These mutations were further filtered based on flagged artifacts,
hypermutators, and pathology to a driver discovery dataset of 9062 samples with
791,489 missense mutations, as described in the recent PanCanAtlas somatic driver
paper25.

Somatic mutation data. We curated experimentally validated mutations identified
as neutral or activating from multiple databases and papers, including the Cancer
Biomarkers database within the Cancer Genome Interpreter18, OncoKB19,
KinDriver20, and ClinVar41. We subsequently required an activating mutation to
be seen in at least 2 of these sources, collecting a total of 367 activating mutations.

PDB structures. We used the GRCh37 assembly and Ensembl release 75 to pre-
process residue pair data for all human proteins in RCSB PDB as of 22 May 2017,
which includes PDB structures of 6002 genes.

Some chains or structures from PDB were filtered out due to the following types
of artifacts in the data file annotations, (1) chains with inconsistent PDB to UniProt
coordinate ranges from DBREF given any alterations from SEQADV length
changes, (2) chains where SEQADV describes REMARK 999, which indicates
absent residues explained by free text, and (3) structures in which site mismatches
were identified (for example, where a Threonine should be found according to the
UniProt sequence, but a Valine was instead found at the position in the PDB
sequence) even after converting between the PDB and UniProt coordinates
designated by the DBREF line.

Bioinformatics and experimental analyses
Quality control of sites and structures. HotPho reads a site input file where each
phosphosite must contain the HUGO symbol, Ensembl transcript accession ID
(ENST), its residue position within the given transcript, and feature description.
The sites are then combined and run through the HotSpot3D search step to
produce pairwise data between mutations and phosphosites, comprising
mutation–mutation pairs, mutation-site pairs, and site-site pairs. Even though
HotPho calculates offsets in residue numbers in PDB structures and transcripts,
some offsets provided by structure uploaders resulted in the erroneous mapping of
residues. In the resulting pairwise files with phosphosites (.musite and.sites files),
we, therefore, filtered out the sites where the mapped residue on the PDB structure
differs from those documented in our original input phosphosite file, ultimately
retaining 785,867 mutation–mutation pairs, 376,614 mutation-site pairs (78,477
eliminated), and 1,010,011 site-site pairs (267,547 eliminated).

The HotPho algorithm and cluster discovery. HotPho extends beyond the origi-
nating HotSpot3D algorithm8 and enables co-clusterings of mutations and phos-
phosites on protein structures (Fig. 1). Briefly, 3D distances of all missense
mutations and phosphosites were calculated using PDB structures, considering the
closest atoms on their respective amino acids on PDB structures, to identify
proximity pairs. Each potential cluster is then treated as an undirected graph
G= (V,E), where V is a subset of the input mutations and phosphosites and E is the
set of proximal pairs from V. Considering vi, vj∈V for i, j ∈ {1,2,…,N} where N is
the number of vertices in V, the clusters are built up using the Floyd–Warshall
shortest-paths algorithm, initiated by the distance matrix of the edges, to obtain the
geodesics, gi,j between each vi and vj. For each vi∈V where i ≠ j, the cluster cen-
trality, c(vi), is then calculated as:

c við Þ ¼ ∑
N

j¼1

1
2gi;j

ð1Þ

For each of the cluster, the centroid is identified as the vertex showing the
highest c(vi), and the cluster closeness score (Cc) is calculated as:

Cc ¼ ∑
N

i¼1
c við Þ ð2Þ

A high Cc score indicates a dense 3D cluster enriched in recurrent mutations
and phosphosites on the protein structure. In the pan-cancer study of mutation-
only clusters, clusters with known cancer proteins showed significantly higher Cc
score than those without cancer-related proteins, and a threshold at top 5% showed
a notably significant difference between cancer- and non-cancer-related proteins8.
Here in our hybrid cluster analysis, we not only show the top 5% clusters show
sensitivity in distinguishing cancer driver genes vs. other genes, but also in
observed vs. randomly simulated clusters.

We then conducted clustering using HotPho with recurrence as the vertex type.
The analysis generated a total of 30,131 unfiltered clusters in 4989 unique genes,
comprising 9483 hybrid clusters, 18,112 mutation-only clusters, and 2536 site-only
clusters. To resolve the multi-modal distribution of cluster closeness scores, we
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further compared the score distributions for 299 mutation-enriched cancer driver
genes13 versus other genes using a ROC curve analysis (Supplementary Fig. 1B, C).

Cluster benchmarking using permutation analysis. The hybrid clusters generated by
HotPho was benchmarked by comparison to those obtained through HotPho
analyses using a combination of the TCGA MC3 mutation data and permutated
phosphosite data. Since we are interested in the hybrid clusters having high cluster
closeness (Cc) scores (ie. more closely packed clusters) we chose the top 100 genes
having high CC clusters. Next, for each of these genes, we found the number of
phosphosites in the original dataset, which are covered by at least one structure.
After that, we generated a permutated phosphosites-dataset by randomly popu-
lating the sites at possible covered phosphosite residue locations keeping the ori-
ginal residue ratios the same. HotPho clustering was performed for 100 such
simulated phosphosites-datasets and the maintained TCGA MC3 mutation call
backbone given the non-random distribution and occurrence count of mutation
calls. Finally, the clusters from the original HotPho run and the simulated runs
were compared focusing on the number of clusters and their Cc score distribution.
We further evaluated the sensitivity, specificity, and ROC curves using different
threshold of the Cc score (Supplementary Fig. 1D). Based on our simulated results,
we set the cluster closeness thresholds as the top 5% cluster closeness score within
each cluster type (e.g., hybrid, mutation-only, and phosphosite-only).

Domain enrichment analysis. We conducted a domain enrichment analysis of co-
cluster phosphosites in PFAM domains (Pfam 31.0 released March 2017)42. We
evaluated domain enrichment of co-clustered phosphosites using the Fisher test.
Each 2 × 2 table was comprised of tallies of domain status (current domain or not)
versus co-clustered status (co-cluster with mutation or not). Although this test is
exact, we followed the general rule-of-thumb for table testing of only evaluating
those cases where there were at least 5 mutations and phosphosites in the domain.
Resulting P-values were corrected to FDR values using the standard Benjamini-
Hochberg procedure.

Mutational impact RPPA analysis. Similar to our previous analyses of a different
set of mutations27, TCGA level-3 normalized RPPA expression data of the tumor
samples were downloaded from Firehose (2016/1/28 archive). The protein/phos-
phoprotein expression percentile of individual proteins in each cancer cohort was
calculated using the empirical cumulative distribution function (ecdf), as imple-
mented in R. Where there are at least 3 carriers within each cancer type, we then
applied the linear model to evaluate the protein/phosphoprotein expression per-
centile between carriers of co-clustered mutations and all other cancer cases. The
age at initial diagnosis, gender, and ethnicity are included as covariates to account
for potential confounding effects. The resulting P values were adjusted to FDR
using the standard Benjamini-Hochberg procedure for tests across all cancer types.

Mutational impact proteome analysis. We analyzed the effects of clustered
mutations using samples from the CPTAC2 retrospective3,4,43 and prospective
collection (https://cptac-data-portal.georgetown.edu/cptac/public). For each hybrid
cluster, protein levels were compared between samples with and without cluster
mutations (Wilcoxon rank-sum test).

Cancer cell dependency analyses. Within each lineage, we carried out a Wil-
coxon rank-sum test between the cell lines with co-clustered missense mutations
versus those with either (1) other missense mutations, or (2) other non-
synonymous mutations. The p-values represent the alternative hypothesis that the
dependency score distribution of the cell lines with co-clustered mutations is
located left (more dependent, more vulnerable) of that of without co-clustered
mutations, and they are multiple-testing adjusted using the BH method for FDR.

Literature reviews of cancer-associated phosphosites. First, we confined our
search space to 71 cancer genes with hybrid clusters by limiting our search space to
299 cancer driver genes25. The abstracts of all publications associated with a
phosphosite were then retrieved from Europe PMC using their Digital Object
Identifier (DOI) or PubMed identifier (PMID). We determined a paper to be
cancer-related if its abstract contained the keyword “tumor” and/or “cancer”. We
then closely examined whether the exact co-clustering phosphosites identified by
HotPho showed any alterations on cancer-related phenotypes in these publications.
Additionally, we included all disease-associated sites in PhosphoSitePlus (snapshot
on the date 2018–02–14) that were connected to any type of cancer.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The TCGA somatic mutation data are available at the Genome Data Commons (GDC)
[https://gdc.cancer.gov/about-data/publications/mc3-2017/]. CPTAC data are available
at the CPTAC Data Portal [https://cptac-data-portal.georgetown.edu/]. The CPTAC
datasets used in this study include the CPTAC2 prospective breast [https://cptac-data-

portal.georgetown.edu/study-summary/S039], ovarian [https://cptac-data-portal.
georgetown.edu/study-summary/S038], and colorectal [https://cptac-data-portal.
georgetown.edu/study-summary/S037] cancer studies, as well as the CPTAC3 discovery
endometrial cancer [https://cptac-data-portal.georgetown.edu/study-summary/S053] and
clear cell renal carcinoma [https://cptac-data-portal.georgetown.edu/study-summary/
S050] studies. Phosphosite data from PTMCosmos are available at https://ptmcosmos.
wustl.edu/.

Code availability
HotPho is released within the package of HotSpot3D v1.7.0 and updated in later versions
[available on GitHub: https://github.com/ding-lab/hotspot3d]. HotPho commands and
all subsequent analyses scripts used for this manuscript are publicly available
[https://github.com/ding-lab/HotPho_Analysis]. Analyses were conducted based on
scripts written using the R programming language version 3.3.2 (2016–10–31).
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