217 research outputs found
Physical and Psychological Aggression in At-Risk Young Couples: Stability and Change in Young Adulthood
Physical and psychological aggression was examined over a 2 1/2-year period for at-risk young couples. It was predicted, first, that there would be persistence in any physical aggression across time in the group of couples who stayed together; second, that stability in levels of aggression toward a partner would be higher for men who remained with the same partner compared to men who repartnered; third, that increases in levels of aggression would occur over time for couples with the same partners; and fourth, that changes in aggression over time would be concordant for couples. Measures of aggression included reports of aggression and observed aggression. Findings indicated considerable stability in aggression for the same-, but not for the different-, partner group
Extension of the crRNA enhances Cpf1 gene editing in vitro and in vivo.
Engineering of the Cpf1 crRNA has the potential to enhance its gene editing efficiency and non-viral delivery to cells. Here, we demonstrate that extending the length of its crRNA at the 5 end can enhance the gene editing efficiency of Cpf1 both in cells and in vivo. Extending the 5 end of the crRNA enhances the gene editing efficiency of the Cpf1 RNP to induce non-homologous end-joining and homology-directed repair using electroporation in cells. Additionally, chemical modifications on the extended 5 end of the crRNA result in enhanced serum stability. Also, extending the 5 end of the crRNA by 59 nucleotides increases the delivery efficiency of Cpf1 RNP in cells and in vivo cationic delivery vehicles including polymer nanoparticle. Thus, 5 extension and chemical modification of the Cpf1 crRNA is an effective method for enhancing the gene editing efficiency of Cpf1 and its delivery in vivo
Bovine Aorta Endothelial Cell Incubation with Interleukin 2: Morphological Changes Correlate with Enhanced Vascular Permeability
Interleukin 2 induced alterations in the morphology of bovine aortic endothelial cells in vitro. The changes observed in confluent cultures of bovine aortic endothelial cells included retraction and elongation of eel ls leading to enlarged gaps between cells quantified by image analysis. Purified IL-2 (1 U/ml medium) increased the gaps between endothelial cells 3-4-fold compared with control cultures. The effect was transient, since the cells reverted to their original morphology 6-12 hours after the removal of lL-2. Correlative scanning electron microscopy (SEM) studies using fresh bovine aorta showed a dose-dependent alteration of the endothelial surface by IL-2 characterized by rounding and elongation of endothelial cells and prominent perinuclear areas. Gaps between the endothelial cells were observed when aorta samples were incubated with 2 U of IL-2/ml of medium. This was confirmed by SEM, transmission electron microscopy and Evans blue dye staining. These results suggest that IL-2 caused morphological alterations in endothelial cells that enhanced the permeability of the vascular endothelium
High-affinity consensus binding of target RNAs by the STAR/GSG proteins GLD-1, STAR-2 and Quaking
<p>Abstract</p> <p>Background</p> <p>STAR/GSG proteins regulate gene expression in metazoans by binding consensus sites in the 5' or 3' UTRs of target mRNA transcripts. Owing to the high degree of homology across the STAR domain, most STAR proteins recognize similar RNA consensus sequences. Previously, the consensus for a number of well-characterized STAR proteins was defined as a hexameric sequence, referred to as the SBE, for <b>S</b>TAR protein <b>b</b>inding <b>e</b>lement. <it>C. elegans </it>GLD-1 and mouse Quaking (Qk-1) are two representative STAR proteins that bind similar consensus hexamers, which differ only in the preferred nucleotide identities at certain positions. Earlier reports also identified partial consensus elements located upstream or downstream of a canonical consensus hexamer in target RNAs, although the relative contribution of these sequences to the overall binding energy remains less well understood. Additionally, a recently identified STAR protein called STAR-2 from <it>C. elegans </it>is thought to bind target RNA consensus sites similar to that of GLD-1 and Qk-1.</p> <p>Results</p> <p>Here, a combination of fluorescence-polarization and gel mobility shift assays was used to demonstrate that STAR-2 binds to a similar RNA consensus as GLD-1 and Qk-1. These assays were also used to further delineate the contributions of each hexamer consensus nucleotide to high-affinity binding by GLD-1, Qk-1 and STAR-2 in a variety of RNA contexts. In addition, the effects of inserting additional full or partial consensus elements upstream or downstream of a canonical hexamer in target RNAs were also measured to better define the sequence elements and RNA architecture recognized by different STAR proteins.</p> <p>Conclusions</p> <p>The results presented here indicate that a single hexameric consensus is sufficient for high-affinity RNA binding by STAR proteins, and that upstream or downstream partial consensus elements may alter binding affinities depending on the sequence and spacing. The general requirements determined for high-affinity RNA binding by STAR proteins will help facilitate the identification of novel regulatory targets <it>in vivo</it>.</p
Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane
Stromal interacting molecule 1 (STIM1), reported to be an endoplasmic reticulum (ER) Ca2+ sensor controlling store-operated Ca2+ entry, redistributes from a diffuse ER localization into puncta at the cell periphery after store depletion. STIM1 redistribution is proposed to be necessary for Ca2+ release–activated Ca2+ (CRAC) channel activation, but it is unclear whether redistribution is rapid enough to play a causal role. Furthermore, the location of STIM1 puncta is uncertain, with recent reports supporting retention in the ER as well as insertion into the plasma membrane (PM). Using total internal reflection fluorescence (TIRF) microscopy and patch-clamp recording from single Jurkat cells, we show that STIM1 puncta form several seconds before CRAC channels open, supporting a causal role in channel activation. Fluorescence quenching and electron microscopy analysis reveal that puncta correspond to STIM1 accumulation in discrete subregions of junctional ER located 10–25 nm from the PM, without detectable insertion of STIM1 into the PM. Roughly one third of these ER–PM contacts form in response to store depletion. These studies identify an ER structure underlying store-operated Ca2+ entry, whose extreme proximity to the PM may enable STIM1 to interact with CRAC channels or associated proteins
Phase I study of nab-paclitaxel, gemcitabine, and bevacizumab in patients with advanced cancers.
BackgroundWe performed a phase I modified 3 + 3 dose escalation study to evaluate the safety and activity of bevacizumab plus gemcitabine and nab-paclitaxel in patients with advanced solid tumours.MethodsPatients were given fixed dose gemcitabine plus increasing doses of nab-paclitaxel and bevacizumab. Toxicity, response, and association with VEGF polymorphism was analysed.ResultsThe study enrolled 110 patients who had undergone a median of 3 prior lines of therapy. The median age was 60 years (range, 17-85 years), and 55 patients (50%) had gemcitabine-refractory disease. We observed 3 dose-limiting toxicities during dose escalation and 3 DLTs in expansion cohorts. Dose escalation to 150 mg/m2 nab-paclitaxel and 15 mg/kg bevacizumab with 1000 mg/m2 of gemcitabine was well tolerated with no MTD. One patient with gemcitabine-refractory peritoneal papillary carcinoma had a complete response, 13 patients (13%) had partial responses, and 54 patients (52%) had stable disease ≥12 weeks. Exploratory VEGF single nucleotide polymorphism (SNP) analysis was performed on 13 patients.ConclusionsThe combination of gemcitabine, nab-paclitaxel, and bevacizumab is safe, well-tolerated, and has activity in advanced malignancies, including gemcitabine-refractory tumours. Based on this study, the recommended phase 2 dose is gemcitabine 1000 mg/m2, nab-paclitaxel 125 mg/m2, and bevacizumab 15 mg/kg. VEGF polymorphism data should be evaluated in future bevacizumab-based trials
An analysis of the effect of statins on the risk of Non-Hodgkin\u27s Lymphoma in the Women\u27s Health Initiative cohort.
Statins have been shown to induce a phosphoprotein signature that modifies MYC (myelocytomatosis viral oncogene) activation and to have anti-inflammatory activity that may impact the risk of Non-Hodgkin\u27s lymphoma (NHL). We analyzed the relationship between statins and risk of NHL using data from the Women\u27s Health Initiative (WHI). The study population included 161,563 postmenopausal women ages 50-79 years from which 712 cases of NHL were diagnosed after 10.8 years of follow-up. Information on statin use and other risk factors was collected by self- and interviewer-administered questionnaires. Multivariable-adjusted HR and 95% CI evaluating the relationship between statin use at baseline, as well as in a time-dependent manner and risk of NHL, were computed from Cox proportional hazards analyses. A separate analysis was performed for individual NHL subtypes: diffuse large B-Cell lymphoma (DLBCL) (n = 228), follicular lymphoma (n = 169), and small lymphocytic lymphoma (n = 74). All statistical tests were two-sided. There was no significant association between use of statins at baseline and risk of NHL (HR 0.85, 95% C.I. 0.67-1.08). However, in the multivariable-adjusted time-dependent models, statin use was associated with a borderline lower risk of NHL (HR 0.81, 95% C.I. 0.66-1.00). Considering subtypes of NHL, statin use was associated with a lower risk of DLBCL (HR 0.62, 95% C.I. 0.42-0.91). This effect was driven by lipophilic statins (HR 0.62, 95% C.I. 0.40-0.96). In the WHI, statins were associated with a lower overall risk of DLBCL, particularly attributable to lipophilic statins. These results may have impact on primary or secondary prevention of NHL, particularly DLBCL
Identification of antibody neutralization epitopes on the fusion protein of human metapneumovirus
Human metapneumovirus (hMPV) is genetically related to respiratory syncytial virus (RSV); both cause respiratory tract illnesses ranging from a mild cough to bronchiolitis and pneumonia. The F protein-directed monoclonal antibody (mAb) palivizumab has been shown to prevent severe lower respiratory tract RSV infection in animals and humans. We have previously reported on a panel of mAbs against the hMPV F protein that neutralize hMPV in vitro and, in two cases, in vivo. Here we describe the generation of hMPV mAb-resistant mutants (MARMs) to these neutralizing antibodies. Sequencing the F proteins of the hMPV MARMs identified several neutralizing epitopes. Interestingly, some of the epitopes mapped on the hMPV F protein coincide with homologous regions mapped previously on the RSV F protein, including the site against which the broadly protective mAb palivizumab is directed. This suggests that these homologous regions play important, conserved functions in both viruses
Recommended from our members
Oxidative Stress Biomarkers and Incidence of Postoperative Atrial Fibrillation in the Omega-3 Fatty Acids for Prevention of Postoperative Atrial Fibrillation (OPERA) Trial
Background: Animal study results point to oxidative stress as a key mechanism triggering postoperative atrial fibrillation (PoAF), yet the extent to which specific biomarkers of oxidative stress might relate to PoAF risk in humans remains speculative. Methods and Results: We assessed the association of validated, fatty acid–derived oxidative stress biomarkers (F2-isoprostanes, isofurans, and F3-isoprostanes) in plasma and urine, with incident PoAF among 551 cardiac surgery patients. Biomarkers were measured at enrollment, the end of surgery, and postoperative day 2. PoAF lasting ≥30 seconds was confirmed with rhythm strip or electrocardiography and centrally adjudicated. Outcomes were assessed until hospital discharge or postoperative day 10, whichever occurred first. Urine level of each oxidative stress biomarker rose at the end of surgery (2- to 3-fold over baseline, P<0.001) and subsequently declined to concentrations comparable to baseline by postoperative day 2. In contrast, plasma concentrations remained relatively stable throughout the perioperative course. Urine F2-isoprostanes and isofurans at the end of surgery were 20% and 50% higher in subjects who developed PoAF (P≤0.009). While baseline biomarker levels did not associate significantly with PoAF, end of surgery and postoperative day 2 isoprostanes and isofurans demonstrated relatively linear associations with PoAF. For example, the end of surgery extreme quartile multivariate adjusted OR (95% CI) for urine isofurans and F3-isoprostanes were 1.95 (1.05 to 3.62; P for trend=0.01) and 2.10 (1.04 to 2.25, P for trend=0.04), respectively. The associations of biomarkers with PoAF varied little by demographics, surgery type, and medication use (P≥0.29 for each). Conclusions: These novel results add to accumulating evidence supporting the likely key pathogenic role of elevated oxidative stress in PoAF. Clinical Trial Registration URL: Clinicaltrials.gov Unique identifier: NCT00970489
- …