50 research outputs found

    Weak antilocalization and electron-electron interaction in coupled multiple-channel transport in a Bi2_2Se3_3 thin film

    Full text link
    Electron transport properties of a topological insulator Bi2_2Se3_3 thin film are studied in Hall-bar geometry. The film with a thickness of 10 nm is grown by van der Waals epitaxy on fluorophlogopite mica and Hall-bar devices are fabricated from the as-grown film directly on the mica substrate. Weak antilocalization and electron-electron interaction effects are observed and analyzed at low temperatures. The phase-coherence length extracted from the measured weak antilocalization characteristics shows a strong power-law increase with decreasing temperature and the transport in the film is shown to occur via coupled multiple (topological surface and bulk states) channels. The conductivity of the film shows a logarithmically decrease with decreasing temperature and thus the electron-electron interaction plays a dominant role in quantum corrections to the conductivity of the film at low temperatures.Comment: 12 pages, 5 figure

    Strong spin-orbit interaction and magnetotransport in semiconductor Bi2_2O2_2Se nanoplates

    Full text link
    Semiconductor Bi2_2O2_2Se nanolayers of high crystal quality have been realized via epitaxial growth. These two-dimensional (2D) materials possess excellent electron transport properties with potential application in nanoelectronics. It is also strongly expected that the 2D Bi2_2O2_2Se nanolayers could be of an excellent material platform for developing spintronic and topological quantum devices, if the presence of strong spin-orbit interaction in the 2D materials can be experimentally demonstrated. Here, we report on experimental determination of the strength of spin-orbit interaction in Bi2_2O2_2Se nanoplates through magnetotransport measurements. The nanoplates are epitaxially grown by chemical vapor deposition and the magnetotransport measurements are performed at low temperatures. The measured magnetoconductance exhibits a crossover behavior from weak antilocalization to weak localization at low magnetic fields with increasing temperature or decreasing back gate voltage. We have analyzed this transition behavior of the magnetoconductance based on an interference theory which describes the quantum correction to the magnetoconductance of a 2D system in the presence of spin-orbit interaction. Dephasing length and spin relaxation length are extracted from the magnetoconductance measurements. Comparing to other semiconductor nanostructures, the extracted relatively short spin relaxation length of ~150 nm indicates the existence of strong spin-orbit interaction in Bi2_2O2_2Se nanolayers.Comment: 14 pages, 4 figures, and 5 pages of Supplementary Material

    Universal conductance fluctuations and phase-coherent transport in a semiconductor Bi2_2O2_2Se nanoplate with strong spin-orbit interaction

    Full text link
    We report on phase-coherent transport studies of a Bi2_2O2_2Se nanoplate and on observation of universal conductance fluctuations and spin-orbit interaction induced reduction in fluctuation amplitude in the nanoplate. Thin-layered Bi2_2O2_2Se nanoplates are grown by chemical vapor deposition (CVD) and transport measurements are made on a Hall-bar device fabricated from a CVD-grown nanoplate. The measurements show weak antilocalization at low magnetic fields at low temperatures, as a result of spin-orbit interaction, and a crossover toward weak localization with increasing temperature. Temperature dependences of characteristic transport lengths, such as spin relaxation length, phase coherence length, and mean free path, are extracted from the low-field measurement data. Universal conductance fluctuations are visible in the low-temperature magnetoconductance over a large range of magnetic fields and the phase coherence length extracted from the autocorrelation function is in consistence with the result obtained from the weak localization analysis. More importantly, we find a strong reduction in amplitude of the universal conductance fluctuations and show that the results agree with the analysis assuming strong spin-orbit interaction in the Bi2_2O2_2Se nanoplate.Comment: 11 pages, 4 figures, supplementary material

    BnMs3 is required for tapetal differentiation and degradation, microspore separation, and pollen-wall biosynthesis in Brassica napus

    Get PDF
    7365AB, a recessive genetic male sterility system, is controlled by BnMs3 in Brassica napus, which encodes a Tic40 protein required for tapetum development. However, the role of BnMs3 in rapeseed anther development is still largely unclear. In this research, cytological analysis revealed that anther development of a Bnms3 mutant has defects in the transition of the tapetum to the secretory type, callose degradation, and pollen-wall formation. A total of 76 down-regulated unigenes in the Bnms3 mutant, several of which are associated with tapetum development, callose degeneration, and pollen development, were isolated by suppression subtractive hybridization combined with a macroarray analysis. Reverse genetics was applied by means of Arabidopsis insertional mutant lines to characterize the function of these unigenes and revealed that MSR02 is only required for transport of sporopollenin precursors through the plasma membrane of the tapetum. The real-time PCR data have further verified that BnMs3 plays a primary role in tapetal differentiation by affecting the expression of a few key transcription factors, participates in tapetal degradation by modulating the expression of cysteine protease genes, and influences microspore separation by manipulating the expression of BnA6 and BnMSR66 related to callose degradation and of BnQRT1 and BnQRT3 required for the primary cell-wall degradation of the pollen mother cell. Moreover, BnMs3 takes part in pollen-wall formation by affecting the expression of a series of genes involved in biosynthesis and transport of sporopollenin precursors. All of the above results suggest that BnMs3 participates in tapetum development, microspore release, and pollen-wall formation in B. napus

    Opioid-free anesthesia with ultrasound-guided quadratus lumborum block in the supine position for lower abdominal or pelvic surgery: a randomized controlled trial

    No full text
    Abstract In the past, quadratus lumborum block (QLB) was mostly used for postoperative analgesia in patients, and few anesthesiologists applied it during surgery with opioid-free anesthesia (OFA). Consequently, it is still unclear whether QLB in the supine position can provide perfect analgesia and inhibit anesthetic stress during surgery under the OFA strategy. To observe the clinical efficacy of ultrasound-guided quadratus lumborum block (US-QLB) in the supine position with OFA for lower abdominal and pelvic surgery. A total of 122 patients who underwent lower abdominal or pelvic surgery in People’s Hospital of Wanning between March 2021 and July 2022 were selected and divided into a quadratus lumborum block group (Q) (n = 62) and control group (C) (n = 60) according to the random number table method. Both groups underwent general anesthesia combined with QLB in the supine position. After sedation, unilateral or bilateral QLB was performed via the ultrasound guided anterior approach based on images resembling a “human eye” and “baby in a cradle” under local anesthesia according to the needs of the operative field. In group Q, 20 ml of 0.50% lidocaine and 0.20% ropivacaine diluted in normal saline (NS) were injected into each side. In group C, 20 ml of NS was injected into each side. The values of BP, HR, SPO2, SE, RE, SPI, NRS, Steward score, dosage of propofol, dexmedetomidine, and rocuronium, the number of patients who needed remifentanil, propofol, or diltiazem, puncture point, block plane, duration of anesthesia, catheter extraction, and wakefulness during the operation were monitored. There were no significant differences in the general data, number of cases requiring additional remifentanil, propofol, or diltiazem treatment, as well as puncture point and puncture plane between the two groups (P > 0.05). HR, SBP, and DBP values were higher in group Q than in group C at T1; HR, SPI, and SE, while RE values were lower in group Q than in group C at T3, SE, and RE; the Steward score was higher in group Q than in group C at T4 and T5, and the difference was statistically significant (P < 0.05). The extubation and awake times were lower in group Q than in group C, and the difference was statistically significant (P < 0.05). The SE, RE, and SPI values were lower at T1, T2, T3, and T4 than at T0. The Steward scores at T4 and T5 were higher in group Q than in group C, and were lower than at T0, with a statistically significant difference (P < 0.05). There were significant differences in the effectiveness of postoperative analgesia between the two groups at t1, t3 and t4 (P < 0.05). US-QLB in the supine position with OFA is effective in patients undergoing lower abdominal or pelvic surgery with stable intraoperative vital signs, complete recovery and better postoperative analgesia

    Prediction of Strength and Ductility in Partially Recrystallized CoCrFeNiTi<sub>0.2</sub> High-Entropy Alloy

    No full text
    The mechanical behavior of a partially recrystallized fcc-CoCrFeNiTi0.2 high entropy alloys (HEA) is investigated. Temporal evolutions of the morphology, size, and volume fraction of the nanoscaled L12-(Ni,Co)3Ti precipitates at 800 &#176;C with various aging time were quantitatively evaluated. The ultimate tensile strength can be greatly improved to ~1200 MPa, accompanied with a tensile elongation of ~20% after precipitation. The temporal exponents for the average size and number density of precipitates reasonably conform the predictions by the PV model. A composite model was proposed to describe the plastic strain of the current HEA. As a consequence, the tensile strength and tensile elongation are well predicted, which is in accord with the experimental results. The present experiment provides a theoretical reference for the strengthening of partially recrystallized single-phase HEAs in the future

    Coupled controls of the infiltration of rivers, urban activities and carbonate on trace elements in a karst groundwater system from Guiyang, Southwest China

    No full text
    Hydrogeochemical processes of trace elements (TEs) are of considerable significance to river water and groundwater resource assessment and utilization in the karst region. Therefore, seven TEs were analyzed to investigate their contents, spatial variations, sources, and controlling factors in Guiyang, a typical karst urban area in southwest China. The results showed that the average content of TEs in river water (e.g., As = 1.44 ± 0.47 μg/L andCo = 0.15 ± 0.06 μg/L) was higher than that of groundwater (e.g., As = 0.51 ± 0.42 μg/L andCo = 0.09 ± 0.05 μg/L). The types of groundwater samples were dominated by Ca/Mg-HCO3 and Ca/Mg-Cl types, while those of the river water samples were Ca-Cl and Ca/Mg-Cl types. Principal component analysis (PCA) and correlation analysis (CA) analyses indicated that As and Mn in the groundwater of the study area were related to river infiltration. The end-member analysis further revealed that river infiltration (As = 0.86–1.81 μg/L, Cl/SO42- = 0.62–0.89) and urban activities (As = 0.21–0.32 μg/L, Cl/SO42- = 0.51–0.89) were two main controlling factors of TEs (e.g., As, Co, and Mn) in the study area. In addition, the ion ratios in river and groundwater samples indicated that the weathering of carbonates was also an important control on the hydrogeochemistry of TEs (e.g., Fe and Mn) in Guiyang waters. This study showed that the trace element (TE) contents of groundwater in the Guiyang area were greatly associated with urban input and river recharge, and provided a new perspective for understanding the geochemical behavior of TEs in urban surface and groundwater bodies, which will help the protection of groundwater in the karst areas of southwest China

    Highly Efficient Adsorption of Pb(II) by Functionalized Humic Acid: Molecular Experiment and Theoretical Calculation

    No full text
    Environmental pollution has been widely considered by researchers, especially the heavy metals damage to the human and ecological environment is irreversible. Adsorption is an important method to remove heavy metal ions from the environment. In this paper, humic acid (HA) was functionalized by the improved Hummers method, and its adsorption capacity for Pb(II) was studied. The results of scanning electron microscope (SEM), X-ray diffraction (XRD), Roman, and Brunauer-Emmett-Teller (BET) showed that the thickness of irregular particles decreases to a layered structure during the transformation process. In addition, X-ray photoelectron spectroscopic (XPS) and Fourier transform infrared spectra (FT-IR) spectra showed that the surface of oxidized-biochar (OBC) was rich in reactive oxygen species, which was conducive to the formation of coordination bonds with Pb(II). Further adsorption experiments showed that it was a spontaneous monolayer chemisorption. The results of the DFT calculation showed that -COOH had the lowest adsorption energy for Pb(II), and it was easier to form stable chemical bonds than -OH, -C=O, and -C-O-C-. Because those oxygen-containing functional groups not only can promote electrostatic attraction but also are more favorable for forming a covalent bond with Pb(II). This study had guiding significance for the deep modification and application of weathered coal as a heavy metal ion adsorbent or cation exchanger
    corecore