8 research outputs found

    Enhanced Detection of Desmoplasia By Targeted Delivery of Iron Oxide Nanoparticles To the Tumour-Specific Extracellular Matrix

    Get PDF
    Diagnostic imaging of aggressive cancer with a high stroma content may benefit from the use of imaging contrast agents targeted with peptides that have high binding affinity to the extracellular matrix (ECM). In this study, we report the use of superparamagnetic iron-oxide nanoparticles (IO-NP) conjugated to a nonapeptide, CSGRRSSKC (CSG), which specifically binds to the laminin-nidogen-1 complex in tumours. We show that CSG-IO-NP accumulate in tumours, predominantly in the tumour ECM, following intravenous injection into a murine model of pancreatic neuroendocrine tumour (PNET). In contrast, a control untargeted IO-NP consistently show poor tumour uptake, and IO-NP conjugated to a pentapeptide. CREKA that bind fibrin clots in blood vessels show restricted uptake in the angiogenic vessels of the tumours. CSG-IO-NP show three-fold higher intratumoral accumulation compared to CREKA-IO-NP. Magnetic resonance imaging (MRI) T2-weighted scans and T2 relaxation times indicate significant uptake of CSG-IO-NP irrespective of tumour size, whereas the uptake of CREKA-IO-NP is only consistent in small tumours of less than 3 mm in diameter. Larger tumours with significantly reduced tumour blood vessels show a lack of CREKA-IO-NP uptake. Our data suggest CSG-IO-NP are particularly useful for detecting stroma in early and advanced solid tumours

    How single-cell techniques help us look into lung cancer heterogeneity and immunotherapy

    Get PDF
    Lung cancer patients tend to have strong intratumoral and intertumoral heterogeneity and complex tumor microenvironment, which are major contributors to the efficacy of and drug resistance to immunotherapy. From a new perspective, single-cell techniques offer an innovative way to look at the intricate cellular interactions between tumors and the immune system and help us gain insights into lung cancer and its response to immunotherapy. This article reviews the application of single-cell techniques in lung cancer, with focuses directed on the heterogeneity of lung cancer and the efficacy of immunotherapy. This review provides both theoretical and experimental information for the future development of immunotherapy and personalized treatment for the management of lung cancer

    Injury to the tunica media initiates atherogenesis in the presence of hyperlipidemia

    Get PDF
    Background and aimsFatty streaks initiating the formation of atheromatous plaque appear in the tunica intima. The tunica media is not known to be a nidus for lipid accumulation initiating atherogenesis. We assessed changes to the tunica media in response to a micro-injury produced in the pig aorta. In addition, we assessed human carotid endarterectomy plaques for indication of atheroma initiation in the tunica media.MethodsThree healthy landrace female pigs underwent laparotomy to inject autologous blood and create micro-hematomas at 6 sites within the tunica media of the infrarenal abdominal aorta. These pigs were fed a high-fat diet (HFD) for 4ā€“12 weeks. Post-mortem aortas from all pigs, including a control group of healthy pigs, were serially stained to detect lipid deposits, vasa vasora (VV), immune cell infiltration and inflammatory markers, as well as changes to the vascular smooth muscle cell (vSMC) compartment. Moreover, 25 human carotid endarterectomy (CEA) specimens were evaluated for their lipid composition in the tunica media and intima.ResultsHigh lipid clusters, VV density, and immune cell infiltrates were consistently observed at 5 out of 6 injection sites under prolonged hyperlipidemia. The hyperlipidemic diet also affected the vSMC compartment in the tunica media adjacent to the tunica adventitia, which correlated with VV invasion and immune cell infiltration. Analysis of human carotid specimens post-CEA indicated that 32% of patients had significantly greater atheroma in the tunica media than in the arterial intima.ConclusionThe arterial intima is not the only site for atherosclerosis initiation. We show that injury to the media can trigger atherogenesis

    The use of whole exome sequencing and murine patient derived xenografts as a method of chemosensitivity testing in sarcoma

    Get PDF
    Abstract Background Soft tissue and bone sarcoma represent a broad spectrum of different pathology and genetic variance. Current chemotherapy regimens are derived from randomised trials and represent empirical treatment. Chemosensitivity testing and whole exome sequencing (WES) may offer personalized chemotherapy treatment based on genetic mutations. Methods A pilot, prospective, non-randomised control experimental study was conducted. Twelve patients with metastatic bone or soft tissue sarcoma that had failed first line chemotherapy treatment were enrolled for this study. Human tissue taken at surgical biopsy under general anaesthetic was divided between two arms of the trial. Subsections of the tumour were used for WES and the remainder was implanted subcutaneously in immunodeficient mice (PDX). Results of WES were analysed using a bioinformatics pipeline to identify mutations conferring susceptibility to kinase inhibitors and common chemotherapeutic agents. PDX models exhibiting successful growth underwent WES of the tumour and subsequent chemosensitivity testing. Results WES was successful in all 12 patients, with successful establishment PDX tumours models in seven patients. WES identified potential actionable therapeutics in all patients. Significant variation in predicted therapeutics was demonstrated between three PDX samples and their matched tumour samples. Conclusion Analysis of WES of fresh tumour specimens via a bioinformatics pipeline may identify potential actionable chemotherapy agents. Further research into this field may lead to the development of personalized cancer therapy for sarcoma

    Immuneā€mediated ECM depletion improves tumour perfusion and payload delivery

    Get PDF
    High extracellular matrix (ECM) content in solid cancers impairs tumour perfusion and thus access of imaging and therapeutic agents. We have devised a new approach to degrade tumour ECM, which improves uptake of circulating compounds. We target the immuneā€modulating cytokine, tumour necrosis factor alpha (TNFĪ±), to tumours using a newly discovered peptide ligand referred to as CSG. This peptide binds to lamininā€“nidogen complexes in the ECM of mouse and human carcinomas with little or no peptide detected in normal tissues, and it selectively delivers a recombinant TNFĪ±ā€CSG fusion protein to tumour ECM in tumourā€bearing mice. Intravenously injected TNFĪ±ā€CSG triggered robust immune cell infiltration in mouse tumours, particularly in the ECMā€rich zones. The immune cell influx was accompanied by extensive ECM degradation, reduction in tumour stiffness, dilation of tumour blood vessels, improved perfusion and greater intratumoral uptake of the contrast agents gadoteridol and iron oxide nanoparticles. Suppressed tumour growth and prolonged survival of tumourā€bearing mice were observed. These effects were attainable without the usually severe toxic side effects of TNFĪ±
    corecore