14 research outputs found

    Endovascular Metal Devices for the Treatment of Cerebrovascular Diseases

    Get PDF
    Cerebrovascular disease involves various medical disorders that obstruct brain blood vessels or deteriorate cerebral circulation, resulting in ischemic or hemorrhagic stroke. Nowadays, platinum coils with or without biological modification have become routine embolization devices to reduce the risk of cerebral aneurysm bleeding. Additionally, many intracranial stents, flow diverters, and stent retrievers have been invented with uniquely designed structures. To accelerate the translation of these devices into clinical usage, an in‐depth understanding of the mechanical and material performance of these metal‐based devices is critical. However, considering the more distal location and tortuous anatomic characteristics of cerebral arteries, present devices still risk failing to arrive at target lesions. Consequently, more flexible endovascular devices and novel designs are under urgent demand to overcome the deficiencies of existing devices. Herein, the pros and cons of the current structural designs are discussed when these devices are applied to the treatment of diseases ranging broadly from hemorrhages to ischemic strokes, in order to encourage further development of such kind of devices and investigation of their use in the clinic. Moreover, novel biodegradable materials and drug elution techniques, and the design, safety, and efficacy of personalized devices for further clinical applications in cerebral vasculature are discussed.Peer reviewe

    Vimentin intermediate filaments and filamentous actin form unexpected interpenetrating networks that redefine the cell cortex

    Full text link
    The cytoskeleton of eukaryotic cells is primarily composed of networks of filamentous proteins, F-actin, microtubules, and intermediate filaments. Interactions among the cytoskeletal components are important in determining cell structure and in regulating cell functions. For example, F-actin and microtubules work together to control cell shape and polarity, while the subcellular organization and transport of vimentin intermediate filament (VIF) networks depend on their interactions with microtubules. However, it is generally thought that F-actin and VIFs form two coexisting but separate networks that are independent due to observed differences in their spatial distribution and functions. In this paper, we present a closer investigation of both the structural and functional interplay between the F-actin and VIF cytoskeletal networks. We characterize the structure of VIFs and F-actin networks within the cell cortex using structured illumination microscopy and cryo-electron tomography. We find that VIFs and F-actin form an interpenetrating network (IPN) with interactions at multiple length scales, and VIFs are integral components of F-actin stress fibers. From measurements of recovery of cell contractility after transient stretching, we find that the IPN structure results in enhanced contractile forces and contributes to cell resilience. Studies of reconstituted networks and dynamic measurements in cells suggest direct and specific associations between VIFs and F-actin. From these results, we conclude that VIFs and F-actin work synergistically, both in their structure and in their function. These results profoundly alter our understanding of the contributions of the components of the cytoskeleton, particularly the interactions between intermediate filaments and F-actin

    Gold Nanorods Conjugated Porous Silicon Nanoparticles Encapsulated in Calcium Alginate Nano Hydrogels Using Microemulsion Templates

    Get PDF
    Porous silicon nanoparticles (PSiNPs) and gold nanorods (AuNRs) can be used as biocompatible nanocarriers for delivery of therapeutics but undesired leakage makes them inefficient. By encapsulating the PSiNPs and AuNRs in a hydrogel shell, we create a biocompatible functional nano carrier that enables sustained release of therapeutics. Here, we report the fabrication of AuNRs-conjugated PSi nanoparticles (AuNRsPSiNPs) through two-step chemical reaction for high capacity loading of hydrophobic and hydrophilic therapeutics with photothermal property. Furthermore, using water-in-oil microemulsion templates, we encapsulate the AuNRsPSiNPs within a calcium alginate hydrogel nanoshell, creating a versatile biocompatible nanocarrier to codeliver therapeutics for biomedical applications. We find that the functionalized nanohydrogel effectively controls the release rate of the therapeutics while maintaining a high loading efficiency and tunable loading ratios. Notably, combinations of therapeutics coloaded in the functionalized nanohydrogels significantly enhance inhibition of multidrug resistance through synergism and promote faster cancer cell death when combined with photothermal therapy. Moreover, the AuNRs can mediate the conversion of near-infrared laser radiation into heat, increasing the release of therapeutics as well as thermally inducing cell damage to promote faster cancer cell death. Our AuNRsPSiNPs functionalized calcium alginate nanohydrogel holds great promise for photothermal combination therapy and other advanced biomedical applications.Peer reviewe

    2018 March 19 concert at Cornell University of Wu Man and the Huayin Puppet Band

    No full text
    Edited full-length concert video.World renowned pipa player Wu Man and the Huayin Shadow Puppet Band performed in concert on March 19, 2018 at Cornell's Barnes Hall. This short documentary provides a glimpse behind the scenes with interviews with Wu Man, band members as well as provides complete song performances of group, solo, and shadow puppets.Cornell East Asia Program1_u6ejeoa

    Association between Augmented Renal Clearance and Inadequate Vancomycin Pharmacokinetic/Pharmacodynamic Targets in Chinese Adult Patients: A Prospective Observational Study

    No full text
    This study aimed to examine the risk factors of augmented renal clearance (ARC) and the association between ARC and vancomycin pharmacokinetic/pharmacodynamic (PK/PD) indices in Chinese adult patients. A prospective, observational, multicenter study was conducted, and 414 adult patients undergoing vancomycin therapeutic drug monitoring (TDM) were enrolled. Clinical and PK/PD data were compared between ARC and non-ARC groups. Independent risk factors were examined using a multivariate logistic regression analysis. The ARC and augmented renal clearance in trauma intensive care (ARCTIC) scoring systems were evaluated. Eighty-eight of the enrolled patients (88/414, 21.3%) had ARC before vancomycin therapy. Patients with ARC were more likely to have subtherapeutic vancomycin PK/PD indices, including trough concentration (p = 0.003) and 24 h area under the concentration–time curve (AUC24) to minimal inhibitory concentration (MIC) ratio (p < 0.001). Male sex (OR = 2.588), age < 50 years (OR = 2.713), overweight (OR = 2.072), receiving mechanical ventilation (OR = 1.785), enteral nutrition (OR = 2.317), neutrophil percentage (OR = 0.975), and cardiovascular diseases (OR = 0.281) were significantly associated with ARC. In conclusion, ARC is associated with subtherapeutic vancomycin trough concentration and AUC24/MIC; therefore, higher than routine doses may be needed. Risk factors and ARC risk scoring systems are valuable for early identification
    corecore