17 research outputs found

    Machine learning method for 12^{12}C event classification and reconstruction in the active target time-projection chamber

    Full text link
    Active target time projection chambers are important tools in low energy radioactive ion beams or gamma rays related researches. In this work, we present the application of machine learning methods to the analysis of data obtained from an active target time projection chamber. Specifically, we investigate the effectiveness of Visual Geometry Group (VGG) and the Residual neural Network (ResNet) models for event classification and reconstruction in decays from the excited 22+2^+_2 state in 12^{12}C Hoyle rotation band. The results show that machine learning methods are effective in identifying 12^{12}C events from the background noise, with ResNet-34 achieving an impressive precision of 0.99 on simulation data, and the best performing event reconstruction model ResNet-18 providing an energy resolution of σE<77\sigma_E<77 keV and an angular reconstruction deviation of σθ<0.1\sigma_{\theta}<0.1 rad. The promising results suggest that the ResNet model trained on Monte Carlo samples could be used for future classifying and predicting experimental data in active target time projection chambers related experiments.Comment: 9 pages, 10 figures, 9 table

    The genome evolution and domestication of tropical fruit mango

    Get PDF
    Background: Mango is one of the world’s most important tropical fruits. It belongs to the family Anacardiaceae, which includes several other economically important species, notably cashew, sumac and pistachio from other genera. Many species in this family produce family-specific urushiols and related phenols, which can induce contact dermatitis. Results: We generate a chromosome-scale genome assembly of mango, providing a reference genome for the Anacardiaceae family. Our results indicate the occurrence of a recent whole-genome duplication (WGD) event in mango. Duplicated genes preferentially retained include photosynthetic, photorespiration, and lipid metabolic genes that may have provided adaptive advantages to sharp historical decreases in atmospheric carbon dioxide and global temperatures. A notable example of an extended gene family is the chalcone synthase (CHS) family of genes, and particular genes in this family show universally higher expression in peels than in flesh, likely for the biosynthesis of urushiols and related phenols. Genome resequencing reveals two distinct groups of mango varieties, with commercial varieties clustered with India germplasms and demonstrating allelic admixture, and indigenous varieties from Southeast Asia in the second group. Landraces indigenous in China formed distinct clades, and some showed admixture in genomes. Conclusions: Analysis of chromosome-scale mango genome sequences reveals photosynthesis and lipid metabolism are preferentially retained after a recent WGD event, and expansion of CHS genes is likely associated with urushiol biosynthesis in mango. Genome resequencing clarifies two groups of mango varieties, discovers allelic admixture in commercial varieties, and shows distinct genetic background of landraces

    The Impact of Genetic Relationship and Linkage Disequilibrium on Genomic Selection

    Get PDF
    Genomic selection is a promising research area due to its practical application in breeding. In this study, impact of realized genetic relationship and linkage disequilibrium (LD) on marker density and training population size required was investigated and their impact on practical application was further discussed. This study is based on experimental data of two populations derived from the same two founder lines (B73, Mo17). Two populations were genotyped with different marker sets at different density: IBM Syn4 and IBM Syn10. A high-density marker set in Syn10 was imputed into the Syn4 population with low marker density. Seven different prediction scenarios were carried out with a random regression best linear unbiased prediction (RR-BLUP) model. The result showed that the closer the real genetic relationship between training and validation population, the fewer markers were required to reach a good prediction accuracy. Taken the short-term cost for consideration, relationship information is more valuable than LD information. Meanwhile, the result indicated that accuracies based on high LD between QTL and markers were more stable over generations, thus LD information would provide more robust prediction capacity in practical applications

    Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization

    Get PDF
    As an economic crop, pepper satisfies people's spicy taste and has medicinal uses worldwide. To gain a better understanding of Capsicum evolution, domestication, and specialization, we present here the genome sequence of the cultivated pepper Zunla-1 (C. annuum L.) and its wild progenitor Chiltepin (C. annuum var. glabriusculum). We estimate that the pepper genome expanded similar to 0.3 Mya (with respect to the genome of other Solanaceae) by a rapid amplification of retrotransposons elements, resulting in a genome comprised of similar to 81% repetitive sequences. Approximately 79% of 3.48-Gb scaffolds containing 34,476 protein-coding genes were anchored to chromosomes by a high-density genetic map. Comparison of cultivated and wild pepper genomes with 20 resequencing accessions revealed molecular footprints of artificial selection, providing us with a list of candidate domestication genes. We also found that dosage compensation effect of tandem duplication genes probably contributed to the pungent diversification in pepper. The Capsicum reference genome provides crucial information for the study of not only the evolution of the pepper genome but also, the Solanaceae family, and it will facilitate the establishment of more effective pepper breeding programs

    The genome evolution and domestication of tropical fruit mango

    Get PDF
    Background: Mango is one of the world’s most important tropical fruits. It belongs to the family Anacardiaceae, which includes several other economically important species, notably cashew, sumac and pistachio from other genera. Many species in this family produce family-specific urushiols and related phenols, which can induce contact dermatitis. Results: We generate a chromosome-scale genome assembly of mango, providing a reference genome for the Anacardiaceae family. Our results indicate the occurrence of a recent whole-genome duplication (WGD) event in mango. Duplicated genes preferentially retained include photosynthetic, photorespiration, and lipid metabolic genes that may have provided adaptive advantages to sharp historical decreases in atmospheric carbon dioxide and global temperatures. A notable example of an extended gene family is the chalcone synthase (CHS) family of genes, and particular genes in this family show universally higher expression in peels than in flesh, likely for the biosynthesis of urushiols and related phenols. Genome resequencing reveals two distinct groups of mango varieties, with commercial varieties clustered with India germplasms and demonstrating allelic admixture, and indigenous varieties from Southeast Asia in the second group. Landraces indigenous in China formed distinct clades, and some showed admixture in genomes. Conclusions: Analysis of chromosome-scale mango genome sequences reveals photosynthesis and lipid metabolism are preferentially retained after a recent WGD event, and expansion of CHS genes is likely associated with urushiol biosynthesis in mango. Genome resequencing clarifies two groups of mango varieties, discovers allelic admixture in commercial varieties, and shows distinct genetic background of landraces

    Circular RNA encoded MET variant promotes glioblastoma tumorigenesis

    No full text
    Abstract Activated by its single ligand, hepatocyte growth factor (HGF), the receptor tyrosine kinase MET is pivotal in promoting glioblastoma (GBM) stem cell self-renewal, invasiveness and tumorigenicity. Nevertheless, HGF/MET-targeted therapy has shown limited clinical benefits in GBM patients, suggesting hidden mechanisms of MET signalling in GBM. Here, we show that circular MET RNA (circMET) encodes a 404-amino-acid MET variant (MET404) facilitated by the N6-methyladenosine (m6A) reader YTHDF2. Genetic ablation of circMET inhibits MET404 expression in mice and attenuates MET signalling. Conversely, MET404 knock-in (KI) plus P53 knock-out (KO) in mouse astrocytes initiates GBM tumorigenesis and shortens the overall survival. MET404 directly interacts with the MET β subunit and forms a constitutively activated MET receptor whose activity does not require HGF stimulation. High MET404 expression predicts poor prognosis in GBM patients, indicating its clinical relevance. Targeting MET404 through a neutralizing antibody or genetic ablation reduces GBM tumorigenicity in vitro and in vivo, and combinatorial benefits are obtained with the addition of a traditional MET inhibitor. Overall, we identify a MET variant that promotes GBM tumorigenicity, offering a potential therapeutic strategy for GBM patients, especially those with MET hyperactivation

    The Impact of Genetic Relationship and Linkage Disequilibrium on Genomic Selection

    No full text
    Genomic selection is a promising research area due to its practical application in breeding. In this study, impact of realized genetic relationship and linkage disequilibrium (LD) on marker density and training population size required was investigated and their impact on practical application was further discussed. This study is based on experimental data of two populations derived from the same two founder lines (B73, Mo17). Two populations were genotyped with different marker sets at different density: IBM Syn4 and IBM Syn10. A high-density marker set in Syn10 was imputed into the Syn4 population with low marker density. Seven different prediction scenarios were carried out with a random regression best linear unbiased prediction (RR-BLUP) model. The result showed that the closer the real genetic relationship between training and validation population, the fewer markers were required to reach a good prediction accuracy. Taken the short-term cost for consideration, relationship information is more valuable than LD information. Meanwhile, the result indicated that accuracies based on high LD between QTL and markers were more stable over generations, thus LD information would provide more robust prediction capacity in practical applications.This article is published as Liu, Hongjun, Huangkai Zhou, Yongsheng Wu, Xiao Li, Jing Zhao, Tao Zuo, Xuan Zhang et al. "The impact of genetic relationship and linkage disequilibrium on genomic selection." PloS one 10, no. 7 (2015): e0132379. doi: 10.1371/journal.pone.0132379. Posted with permission.</p

    Scenarios for GS tests.

    No full text
    <p><sup>a</sup> Mixed population was a combination of the Syn4 and Syn10 populations</p><p><sup>b</sup> Lines for training and validation came from the same population</p><p><sup>c</sup> Lines for training and validation came from different populations</p><p><sup>d</sup> Lines for training came from both populations.</p><p>Scenarios for GS tests.</p
    corecore