18 research outputs found

    Limb development genes underlie variation in human fingerprint patterns

    Get PDF
    Fingerprints are of long-standing practical and cultural interest, but little is known about the mechanisms that underlie their variation. Using genome-wide scans in Han Chinese cohorts, we identified 18 loci associated with fingerprint type across the digits, including a genetic basis for the long-recognized “pattern-block” correlations among the middle three digits. In particular, we identified a variant near EVI1 that alters regulatory activity and established a role for EVI1 in dermatoglyph patterning in mice. Dynamic EVI1 expression during human development supports its role in shaping the limbs and digits, rather than influencing skin patterning directly. Trans-ethnic meta-analysis identified 43 fingerprint-associated loci, with nearby genes being strongly enriched for general limb development pathways. We also found that fingerprint patterns were genetically correlated with hand proportions. Taken together, these findings support the key role of limb development genes in influencing the outcome of fingerprint patterning

    Performance Evaluation of An Innovative Column Attachment Ventilation

    No full text
    An innovative column attachment ventilation (CAV) was proposed for heating, ventilating and air-conditioning (HVAC) systems and its performance was evaluated through experimental investigation and numerical modeling. Airflow pattern, air temperature distribution, air diffusion performance index (ADPI), predicted mean vote (PMV), and draught rate (DR), were used as the performance indicators to investigate the air distribution performance. The ventilation effectiveness for heat removal in the CAV mode was compared with a conventional mixing ventilation (MV). The results showed that the discharged air from the linear slot diffuser can attach to the column and enter into the occupied zone creating air lake phenomenon. The airflow spread over the floor in a radial pattern behaved as a stratified air distribution like displacement ventilation (DV), providing good air quality and comfort level for occupants. Moreover, the heat removal effectiveness in the CAV was found to be higher than in the MV, i.e. 1.32 in the C-CAV and 1.29 in the S-CAV modes. The column attachment ventilation can achieve thermal comfort in the occupied zone without local discomfort caused by high vertical temperature difference and draught, and this ventilation strategy could be expected as a new and efficient air distribution pattern for different HVAC applications

    Novel Predictive Scoring System for Intravenous Immunoglobulin Resistance Helps Timely Intervention in Kawasaki Disease: The Chinese Experience

    No full text
    Background. Approximately 10%–20% of patients with Kawasaki disease (KD) are nonresponsive to intravenous immunoglobulin (IVIG) treatment, placing them at higher risk of developing coronary heart lesions. Early detection of nonresponsiveness is crucial to curtail this risk; however, the applicability of existing predictive scoring systems is limited to the Japanese population. Our study aimed to identify a predictive scoring system for IVIG resistance in KD specific to the Chinese population. We aimed to assess the utility of three commonly used risk-scoring systems in predicting IVIG resistance and compare them to the newly developed predictive scoring system. Methods. A total of 895 patients with KD were enrolled in this retrospective review and divided into two groups: IVIG responders and nonresponders. Clinical and laboratory variables were compared between the two groups. Multivariable logistic regression models were used to construct a new scoring system. The utility of the existing and new scoring systems was assessed and compared using the area under the receiver operating characteristic curve. Results. Albumin levels, percentage of neutrophils, and hemoglobin were independent predictors of resistance by logistic regression analysis. The new predictive scoring system was derived with improved sensitivity (60.5%) and specificity (87.8%). The area under the receiver operating characteristic curve was 0.818. Conclusion. This study developed a novel risk-scoring system for predicting resistance to IVIG treatment in KD specific to the Chinese population. Although this new model requires further validation, it may be useful for improving prognostic outcomes and reducing the risk of complications associated with KD

    Targeted next-generation sequencing by specific capture of multiple genomic loci using low-volume microfluidic DNA arrays

    No full text
    We report a flexible method for selective capture of sequence fragments from complex, eukaryotic genome libraries for next-generation sequencing based on hybridization to DNA microarrays. Using microfluidic array architecture and integrated hardware, the process is amenable to complete automation and does not introduce amplification steps into the standard library preparation workflow, thereby avoiding bias of sequence distribution and fragment lengths. We captured a discontiguous human genomic target region of 185 kb using a tiling design with 50mer probes. Analysis by high-throughput sequencing using an Illumina/ Solexa 1G Genome Analyzer revealed 2150-fold enrichment with mean per base coverage between 4.6 and 107.5-fold for the individual target regions. This method represents a flexible and cost-effective approach for large-scale resequencing of complex genomes

    Targeted high throughput sequencing of a cancer-related exome subset by specific sequence capture with a fully automated microarray platform

    Get PDF
    Sequence capture methods for targeted next generation sequencing promise to massively reduce cost of genomics projects compared to untargeted sequencing. However, evaluated capture methods specifically dedicated to biologically relevant genomic regions are rare. Whole exome capture has been shown to be a powerful tool to discover the genetic origin of disease and provides a reduction in target size and thus calculative sequencing capacity of > 90-fold compared to untargeted whole genome sequencing. For further cost reduction, a valuable complementing approach is the analysis of smaller, relevant gene subsets but involving large cohorts of samples. However, effective adjustment of target sizes and sample numbers is hampered by the limited scalability of enrichment systems. We report a highly scalable and automated method to capture a 480 Kb exome subset of 115 cancer-related genes using microfluidic DNA arrays. The arrays are adaptable from 125 Kb to 1 Mb target size and/or one to eight samples without barcoding strategies, representing a further 26 270-fold reduction of calculative sequencing capacity compared to whole exome sequencing. Illumina GAII analysis of a HapMap genome enriched for this exome subset revealed a completeness of > 96%. Uniformity was such that > 68% of exons had at least half the median depth of coverage. An analysis of reference SNPs revealed a sensitivity of up to 93% and a specificity of 98.2% or higher

    Syndecan-1-Dependent Suppression of PDK1/Akt/Bad Signaling by Docosahexaenoic Acid Induces Apoptosis in Prostate Cancer1

    Get PDF
    Evidence indicates that diets enriched in n-3 polyunsaturated fatty acids (n-3 PUFAs) reduce the risk of prostate cancer, but biochemical mechanisms are unclear. Syndecan-1 (SDC-1), a transmembrane heparan sulfate proteoglycan, supports the integrity of the epithelial compartment. In tumor cells of epithelial lineage, SDC-1 is generally downregulated. This may result in perturbation of homeostasis and lead to progression of malignancy. Our studies have shown that the n-3 PUFA species, docosahexaenoic acid (DHA), increases SDC-1 expression in prostate tissues of Pten knockout (PtenP-/-) mice/cells and human prostate cancer cells. We have now determined that DHA-mediated up-regulation of SDC-1 induces apoptosis. Bovine serum albumin-bound DHA and exogenous human recombinant SDC-1 ecotodomain were delivered to PC3 and LNCaP cells in the presence or absence of SDC-1 small interfering (si)RNA. In the presence of control siRNA, both DHA and SDC-1 ectodomain induced apoptosis, whereas SDC-1 silencing blocked DHA-induced but not SDC-1 ectodomain-induced apoptosis. Downstream effectors of SDC-1 signaling linked to n-3 PUFA-induced apoptosis involved the 3′-phosphoinositide-dependent kinase 1 (PDK1)/Akt/Bad integrating network. A diet enriched in n-3 PUFA decreased phosphorylation of PDK1, Akt (T308), and Bad in prostates of PtenP-/- mice. Similar results were observed in human prostate cancer cells in response to DHA and SDC-1 ectodomain. The effect of DHA on PDK1/Akt/Bad signaling was abrogated by SDC-1 siRNA. These findings define a mechanism by which SDC-1-dependent suppression of phosphorylation of PDK1/Akt/Bad mediates n-3 PUFA-induced apoptosis in prostate cancer

    Microarray-based multicycle-enrichment of genomic subsets for targeted next-generation sequencing

    No full text
    The lack of efficient high-throughput methods for enrichment of specific sequences from genomic DNA represents a key bottleneck in exploiting the enormous potential of next-generation sequencers. Such methods would allow for a systematic and targeted analysis of relevant genomic regions. Recent studies reported sequence enrichment using a hybridization step to specific DNA capture probes as a possible solution to the problem. However, so far no method has provided sufficient depths of coverage for reliable base calling over the entire target regions. We report a strategy to multiply the enrichment performance and consequently improve depth and breadth of coverage for desired target sequences by applying two iterative cycles of hybridization with microfluidic Geniom biochips. Using this strategy, we enriched and then sequenced the cancer-related genes BRCA1 and TP53 and a set of 1000 individual dbSNP regions of 500 bp using Illumina technology. We achieved overall enrichment factors of up to 1062-fold and average coverage depths of 470-fold. Combined with high coverage uniformity, this resulted in nearly complete consensus coverages with >86% of target region covered at 20-fold or higher. Analysis of SNP calling accuracies after enrichment revealed excellent concordance, with the reference sequence closely mirroring the previously reported performance of Illumina sequencing conducted without sequence enrichment

    Decorin Suppresses Prostate Tumor Growth through Inhibition of Epidermal Growth Factor and Androgen Receptor Pathways1

    Get PDF
    Epidermal growth factor receptor (EGFR) and androgen receptor (AR) pathways play pivotal roles in prostate cancer progression. Therefore, agents with dual-targeting ability may have important therapeutic potential. Decorin, a proteoglycan present in the tumor microenvironment, is known to regulate matrix assembly, growth factor binding, and receptor tyrosine kinase activity. Here, we show that in prostate-specific PtenP-/- mice, a genetically defined, immune-competent mouse model of prostate cancer, systemic delivery of decorin inhibits tumor progression by targeting cell proliferation and survival pathways. Moreover, in human prostate cancer cells, we show that decorin specifically inhibits EGFR and AR phosphorylation and cross talk between these pathways. This prevents AR nuclear translocation and inhibits the production of prostate specific antigen. Further, the phosphatidylinositol-3 kinase (PI3K)/Akt cell survival pathway is suppressed leading to tumor cell apoptosis. Those findings highlight the effectiveness of decorin in the presence of a powerful genetic cancer risk and implicate decorin as a potential new agent for prostate cancer therapy by targeting EGFR/AR-PI3K-Akt pathways
    corecore