29 research outputs found

    The Emerging of Hydrovoltaic Materials as a Future Technology: A Case Study for China

    Get PDF
    Water contains tremendous energy in various forms, but very little of this energy has yet been harvested. Nanostructured materials can generate electricity by water-nanomaterial interaction, a phenomenon referred to as hydrovoltaic effect, which potentially extends the technical capability of water energy harvesting. In this chapter, starting by describing the fundamental principle of hydrovoltaic effect, including water-carbon interactions and fundamental mechanisms of harvesting water energy with nanostructured materials, experimental advances in generating electricity from water flows, waves, natural evaporation, and moisture are then reviewed. We further discuss potential applications of hydrovoltaic technologies, analyze main challenges in improving the energy conversion efficiency and scaling up the output power, and suggest prospects for developments of the emerging technology, especially in China

    Magnetoelectric Tuning of Pinning‐Type Permanent Magnets through Atomic‐Scale Engineering of Grain Boundaries

    Get PDF
    Pinning‐type magnets with high coercivity at high temperatures are at the core of thriving clean‐energy technologies. Among these, Sm2Co17‐based magnets are excellent candidates owing to their high‐temperature stability. However, despite intensive efforts to optimize the intragranular microstructure, the coercivity currently only reaches 20–30% of the theoretical limits. Here, the roles of the grain‐interior nanostructure and the grain boundaries in controlling coercivity are disentangled by an emerging magnetoelectric approach. Through hydrogen charging/discharging by applying voltages of only ≈1 V, the coercivity is reversibly tuned by an unprecedented value of ≈1.3 T. In situ magneto‐structural characterization and atomic‐scale tracking of hydrogen atoms reveal that the segregation of hydrogen atoms at the grain boundaries, rather than the change of the crystal structure, dominates the reversible and substantial change of coercivity. Hydrogen reduces the local magnetocrystalline anisotropy and facilitates the magnetization reversal starting from the grain boundaries. This study opens a way to achieve the giant magnetoelectric effect in permanent magnets by engineering grain boundaries with hydrogen atoms. Furthermore, it reveals the so far neglected critical role of grain boundaries in the conventional magnetization‐switching paradigm of pinning‐type magnets, suggesting a critical reconsideration of engineering strategies to overcome the coercivity limits

    Molecular evolution and association of natural variation in ZmARF31 with low phosphorus tolerance in maize

    No full text
    Low-phosphorus (P) stress is one of the major factors constraining plant growth and yield. Improving plant tolerance to P starvation through molecular breeding is an efficient alternative to increase grain production. In the study, 331 diverse maize inbreds were used to detect nucleotide diversity and favorable alleles of ZmARF31, which plays a key role in low P responses and root architecture regulation. Significant phenotypic variation was found in each of 11 tested traits under both P and no-P treatments, and 30 single nucleotide polymorphisms (SNPs) and 14 insertion-deletions (InDels) were detected in ZmARF31 among the 331 maize inbreds. The 5â€Č-untranslated region (UTR) of ZmARF31 showed a small linkage disequilibrium (LD) block under significant purifying selection, whereas the 3â€Č-UTR showed the most abundant diversity and a larger LD block. Thirty, fourteen, and nine natural variations were identified in ZmARF31 that were associated with P-deficiency-tolerance traits (P ≀ 0.01) by using the general linear model (GLM), GLM incorporated with population structure, and mixed linear model, respectively. Four SNPs were significantly associated with the total dry weight in the three models, of which SNPs S410 and S462 were located in a complete LD block. A further verification conducted in a recombinant inbred line population revealed that favorable allele G/G of nonsynonymous mutation S410 and favorable allele with a 38 bp insertion of InDel S1442 exhibited positive genetic effects on the total dry weight and total root tips, respectively. Expression analysis further confirmed that ZmARF31 was highly expressed in the roots of low-P-tolerant inbred 178. The protein encoded by ZmARF31 was located both in the nucleus and cytoplasm. Haplotypes carrying more favorable alleles showed a greater effect on phenotypic variation than single loci. Such haplotypes should be helpful to develop valuable genetic markers and perform maize molecular breeding

    MmWave Radar and Vision Fusion for Object Detection in Autonomous Driving: A Review

    No full text
    With autonomous driving developing in a booming stage, accurate object detection in complex scenarios attract wide attention to ensure the safety of autonomous driving. Millimeter wave (mmWave) radar and vision fusion is a mainstream solution for accurate obstacle detection. This article presents a detailed survey on mmWave radar and vision fusion based obstacle detection methods. First, we introduce the tasks, evaluation criteria, and datasets of object detection for autonomous driving. The process of mmWave radar and vision fusion is then divided into three parts: sensor deployment, sensor calibration, and sensor fusion, which are reviewed comprehensively. Specifically, we classify the fusion methods into data level, decision level, and feature level fusion methods. In addition, we introduce three-dimensional(3D) object detection, the fusion of lidar and vision in autonomous driving and multimodal information fusion, which are promising for the future. Finally, we summarize this article

    A metal-free and recyclable synthesis of benzothiazoles using thiourea as a sulfur surrogate

    No full text
    [Display omitted] Using odorless thiourea as the S source, benzothiazoles and asymmetric disulfides could be obtained from thioformanilides through the tandem cyclization/nucleophilic addition/hydrolysis/nucleophilic substitution reaction. Furthermore, the obtained asymmetric disulfides could readily transfer to benzothiazoles after nitro-reduction and amide formation reaction. This metal-free and recyclable synthetic methodology offered a time-efficient, less expensive, and environmentally friendly alternative to multifunctional benzothiazoles

    <i>ZmLBD5</i> Increases Drought Sensitivity by Suppressing ROS Accumulation in Arabidopsis

    No full text
    Drought stress is known to significantly limit crop growth and productivity. Lateral organ boundary domain (LBD) transcription factors—particularly class-I members—play essential roles in plant development and biotic stress. However, little information is available on class-II LBD genes related to abiotic stress in maize. Here, we cloned a maize class-II LBD transcription factor, ZmLBD5, and identified its function in drought stress. Transient expression, transactivation, and dimerization assays demonstrated that ZmLBD5 was localized in the nucleus, without transactivation, and could form a homodimer or heterodimer. Promoter analysis demonstrated that multiple drought-stress-related and ABA response cis-acting elements are present in the promoter region of ZmLBD5. Overexpression of ZmLBD5 in Arabidopsis promotes plant growth under normal conditions, and suppresses drought tolerance under drought conditions. Furthermore, the overexpression of ZmLBD5 increased the water loss rate, stomatal number, and stomatal apertures. DAB and NBT staining demonstrated that the reactive oxygen species (ROS) decreased in ZmLBD5-overexpressed Arabidopsis. A physiological index assay also revealed that SOD and POD activities in ZmLBD5-overexpressed Arabidopsis were higher than those in wild-type Arabidopsis. These results revealed the role of ZmLBD5 in drought stress by regulating ROS levels

    Characteristics of microRNAs and Target Genes in Maize Root under Drought Stress

    No full text
    Maize (Zea mays) is an important multi-functional crop. The growth and yield of maize are severely affected by drought stress. Previous studies have shown that microRNAs (miRNAs) in maize play important roles in response to abiotic stress; however, their roles in response to drought stress in maize roots is unclear. In our study, we found 375 miRNAs in the roots of 16 inbred lines. Of the 16 lines, zma-MIR168, zma-MIR156, and zma-MIR166 were highly expressed, whereas zma-MIR399, zma-MIR2218, and zma-MIR2275 exhibited low expression levels. The expression patterns of miRNA in parental lines and their derived RILs are different. Over 50% of miRNAs exhibited a lower expression in recombinant inbred lines than in parents. The expression of 50 miRNAs was significantly altered under water stress (WS) in at least three inbred lines, and the expression of miRNAs in drought-tolerant lines changed markedly. To better understand the reasons for miRNA response to drought, the degree of histone modifications for miRNA genes was estimated. The methylation level of H3K4 and H3K9 in miRNA precursor regions changed more noticeably after WS, but no such phenomenon was seen for DNA methylation and m6A modification. After the prediction of miRNA targets using psRNATarget and psRobot, we used correlation analysis and qRT-PCR to further investigate the relationship between miRNAs and target genes. We found that 87 miRNA–target pairs were significantly negatively correlated. In addition, a weighted gene co-expression network analysis using miRNAs, as well as their predicted targets, was conducted to reveal that miR159, miR394, and miR319 may be related to maize root growth. The results demonstrated that miRNAs might play essential roles in the response to drought stress

    Geochemical characteristics and source of crude oil from the eastern Shawan Sag, Junggar Basin

    No full text
    The Shawan Sag is one of the important exploration areas in the hinterland of the Junggar Basin. In order to better clarify the source of crude oil from the Permian, Jurassic and Cretaceous reservoirs in the sag and identify hydrocarbon accumulation processes and enrichment pattern, the authors conducted a carbon isotope and biomarker analysis on the typical crude oil samples from the eastern Shawan Sag in this study, and further carried out crude oil classification and oil-source correlation based on the analysis of geochemical characteristics of crude oil. The results indicate that the crude oil from different strata in the eastern Shawan Sag can be divided into three types. The first type mainly occurs in the Permian and Jurassic reservoirs, and its whole oil ÎŽ13C value and Pr/Ph ratio range from -31.0‰ to -29.0‰ and from 1.0 to 2.0, respectively. The relative contents of αααR regular sterane display the characteristics of C27 C23 TT and C24TeT/C26TT C21>C23TT. The distribution fraction of methyl phenanthrene reflects that the crude oil is in the stage of high-maturity evolution. All these indicate the mixing of crude oil generated in the Lower Permian source rocks. The second type occurs in the Middle Jurassic reservoirs. The whole oil ÎŽ13C value and individual n-alkanes ÎŽ13C value are higher than -29.0‰. The Pr/Ph ratio is relatively higher, ranging from 2.0 to 2.5, with C24TeT/C26TT>1, which indicate that this type of crude oil is mainly derived from the Jurassic source rocks. The third type occurs in the Lower Cretaceous reservoirs, and its whole oil ÎŽ13C value and Pr/Ph ratio are lower than -31.0‰ and 1.0, respectively. The αααR regular sterane contents display the characteristics of C27≈C28 <C29, with the gammacerane index higher than 0.50. The individual n-alkanes ÎŽ13C value gradually decreases with the increase of carbon number and is commonly lower than -31.0‰. This type of oil is demonstrated to be mainly derived from the Lower Cretaceous source rocks
    corecore