51,121 research outputs found

    Aharonov-Bohm effect in monolayer black phosphorus (phosphorene) nanorings

    Full text link
    This work presents theoretical demonstration of Aharonov-Bohm (AB) effect in monolayer phosphorene nanorings (PNR). Atomistic quantum transport simulations of PNR are employed to investigate the impact of multiple modulation sources on the sample conductance. In presence of a perpendicular magnetic field, we find that the conductance of both armchair and zigzag PNR oscillate periodically in a low-energy window as a manifestation of the AB effect. Our numerical results have revealed a giant magnetoresistance (MR) in zigzag PNR (with a maximum magnitude approaching two thousand percent). It is attributed to the AB effect induced destructive interference phase in a wide energy range below the bottom of the second subband. We also demonstrate that PNR conductance is highly anisotropic, offering an additional way to modulate MR. The giant MR in PNR is maintained at room temperature in the presence of thermal broadening effect.Comment: 7 pages, 7 figure

    MAT: A Multi-strength Adversarial Training Method to Mitigate Adversarial Attacks

    Full text link
    Some recent works revealed that deep neural networks (DNNs) are vulnerable to so-called adversarial attacks where input examples are intentionally perturbed to fool DNNs. In this work, we revisit the DNN training process that includes adversarial examples into the training dataset so as to improve DNN's resilience to adversarial attacks, namely, adversarial training. Our experiments show that different adversarial strengths, i.e., perturbation levels of adversarial examples, have different working zones to resist the attack. Based on the observation, we propose a multi-strength adversarial training method (MAT) that combines the adversarial training examples with different adversarial strengths to defend adversarial attacks. Two training structures - mixed MAT and parallel MAT - are developed to facilitate the tradeoffs between training time and memory occupation. Our results show that MAT can substantially minimize the accuracy degradation of deep learning systems to adversarial attacks on MNIST, CIFAR-10, CIFAR-100, and SVHN.Comment: 6 pages, 4 figures, 2 table

    Evidence for the Formation of Quasi-Bound-State in an Asymmetrical Quantum Point Contact

    Full text link
    Features below the first conductance plateau in ballistic quantum point contacts (QPCs) are often ascribed to electron interaction and spin effects within the single mode limit. In QPCs with a highly asymmetric geometry, we observe sharp resonance peaks when the point contacts are gated to the single mode regime, and surprisingly, under certain gating conditions, a complete destruction of the 2e^2/h, first quantum plateau. The temperature evolution of the resonances suggest non-Fermi liquid behavior, while the overall nonlinear characterizations reveal features reminiscent of the 0.7 effect. We attribute these unusual behaviors to the formation of a quasi bound state, which is stabilized by a momentum-mismatch accentuated by asymmetry.Comment: 5 pages, 5 figure

    Attentive Tensor Product Learning

    Full text link
    This paper proposes a new architecture - Attentive Tensor Product Learning (ATPL) - to represent grammatical structures in deep learning models. ATPL is a new architecture to bridge this gap by exploiting Tensor Product Representations (TPR), a structured neural-symbolic model developed in cognitive science, aiming to integrate deep learning with explicit language structures and rules. The key ideas of ATPL are: 1) unsupervised learning of role-unbinding vectors of words via TPR-based deep neural network; 2) employing attention modules to compute TPR; and 3) integration of TPR with typical deep learning architectures including Long Short-Term Memory (LSTM) and Feedforward Neural Network (FFNN). The novelty of our approach lies in its ability to extract the grammatical structure of a sentence by using role-unbinding vectors, which are obtained in an unsupervised manner. This ATPL approach is applied to 1) image captioning, 2) part of speech (POS) tagging, and 3) constituency parsing of a sentence. Experimental results demonstrate the effectiveness of the proposed approach
    corecore