48 research outputs found

    LiFePO4 Cathode Material

    Get PDF

    Low carbon building performance in the construction industry: A multi-method approach of system dynamics and building performance modelling

    Get PDF
    The construction industry contributes significantly to energy consumption and carbon emissions. Moreover, people spend more time inside buildings, so their health is increasingly influenced by indoor environmental conditions. When considered through these lenses, the concept of total building performance can span energy consumption, the associated CO2 emissions, and indoor environmental quality (IEQ). At the individual project level, building underperformance with respect to energy and IEQ is frequent, and the ex post performance gap is partially attributed to the construction project management and operations phase of the building lifecycle. This underperformance motivates the research of this paper into the construction process outcomes in terms of energy performance and IEQ, and ways to reduce the performance gap. The paper develops a multi-methodology framework to analyse the effect of building development project process on energy performance and IEQ from an operations management perspective. The framework couples system dynamics modelling of construction project management to building performance modelling. The paper details the way they are coupled, the application steps and data requirements, so that they can be applied on a case by case basis. The aim is to combine operations management to building performance disciplines and deliver insights for industry practitioners and policy makers

    Monitoring power module solder degradation from heat dissipation in two opposite directions

    Get PDF
    Solder degradation is still a main failure mechanism for power semiconductor modules. This study proposes a monitoring method to detect the relative change in heat dissipation from a module in two opposing directions, affected by the degradation: upwards via the silicone gel and downwards via the solder layer to the heatsink. The method is based on external module package measurements, and a Condition Indicator is defined as the ratio of heat transfer rates in the two directions. The expected response of to the level of degradation is analysed for different module operating points and external environment conditions. The method is demonstrated by experiment

    Unveiling high-power and high-safety lithium-ion battery separator based on interlayer of ZIF-67/cellulose nanofiber with electrospun poly(vinyl alcohol)/melamine nonwoven membranes

    Get PDF
    Due to the poor thermal stability of conventional separators, lithium-ion batteries require a suitable separator to maintain system safety for long-term cycling performance. It must have high porosity, superior electrolyte uptake ability, and good ion-conducting properties even at high temperatures. In this work, we demonstrate a novel composite membrane based on sandwiching of zeolitic imidazole frameworks-67 decorated cellulose acetate nanofibers (ZIF-67@CA) with electrospun poly(vinyl alcohol)/melamine (denoted as PVAM) nonwoven membranes. The as-prepared sandwich-type membranes are called PVAM/x%ZIF-67@CA/PVAM. The middle layer of composite membranes is primarily filled with different weight percentages of ZIF-67 nanoparticles (x = 5, 15, and 25 wt%), which both reduces the non-uniform porous structure of CA and increases its thermal stability. Therefore, our sandwich-type PVAM/x%ZIF-67@CA/PVAM membrane exhibits a higher thermal shrinkage effect at 200 °C than the commercial polyethylene (PE) separator. Due to its high electrolyte uptake (646.8%) and porosity (85.2%), PVAM/15%ZIF-67@CA/PVAM membrane achieved high ionic conductivity of 1.46 × 10-3 S cm−1 at 70 °C, as compared to the commercial PE separator (ca. 6.01 × 10-4 S cm−1 at 70 °C). Besides, the cell with PVAM/15%ZIF-67@CA/PVAM membrane shows an excellent discharge capacity of about 167.5 mAh g−1after 100 cycles at a 1C rate with a capacity retention of 90.3%. The ZIF-67 fillers in our sandwich-type composite membrane strongly attract anions (PF6-) through Lewis' acid-base interaction, allowing uniform Li+ ion transport and suppressing Li dendrites. As a result, we found that the PVAM/15%ZIF-67@CA/PVAM composite nonwoven membrane is applicable to high-power, high-safety lithium-ion battery systems that can be used in electric vehicles (EVs)

    Ligand and structure-based approaches for the exploration of structure–activity relationships of fusidic acid derivatives as antibacterial agents

    Get PDF
    Introduction: Fusidic acid (FA) has been widely applied in the clinical prevention and treatment of bacterial infections. Nonetheless, its clinical application has been limited due to its narrow antimicrobial spectrum and some side effects.Purpose: Therefore, it is necessary to explore the structure–activity relationships of FA derivatives as antibacterial agents to develop novel ones possessing a broad antimicrobial spectrum.Methods and result: First, a pharmacophore model was established on the nineteen FA derivatives with remarkable antibacterial activities reported in previous studies. The common structural characteristics of the pharmacophore emerging from the FA derivatives were determined as those of six hydrophobic centers, two atom centers of the hydrogen bond acceptor, and a negative electron center around the C-21 field. Then, seven FA derivatives have been designed according to the reported structure–activity relationships and the pharmacophore characteristics. The designed FA derivatives were mapped on the pharmacophore model, and the Qfit values of all FA derivatives were over 50 and FA-8 possessed the highest value of 82.66. The molecular docking studies of the partial target compounds were conducted with the elongation factor G (EF-G) of S. aureus. Furthermore, the designed FA derivatives have been prepared and their antibacterial activities were evaluated by the inhibition zone test and the minimum inhibitory concentration (MIC) test. The derivative FA-7 with a chlorine group as the substituent group at C-25 of FA displayed the best antibacterial property with an MIC of 3.125 µM. Subsequently, 3D-QSAR was carried on all the derivatives by using the CoMSIA mode of SYBYL-X 2.0.Conclusion: Hence, a computer-aided drug design model was developed for FA, which can be further used to optimize FA derivatives as highly potent antibacterial agents

    Synthesis and Biological Evaluation of Novel Fusidic Acid Derivatives as Two-in-One Agent with Potent Antibacterial and Anti-Inflammatory Activity

    Get PDF
    Fusidic acid (FA), a narrow-spectrum antibiotics, is highly sensitive to various Gram-positive cocci associated with skin infections. It has outstanding antibacterial effects against certain Gram-positive bacteria whilst no cross-resistance with other antibiotics. Two series of FA derivatives were synthesized and their antibacterial activities were tested. A new aromatic side-chain analog, FA-15 exhibited good antibacterial activity with MIC values in the range of 0.781-1.563 µM against three strains of Staphylococcus spp. Furthermore, through the assessment by the kinetic assay, similar characteristics of bacteriostasis by FA and its aromatic derivatives were observed. In addition, anti-inflammatory activities of FA and its aromatic derivatives were evaluated by using a 12-O-tetradecanoylphorbol-13-acetate (TPA) induced mouse ear edema model. The results also indicated that FA and its aromatic derivatives effectively reduced TPA-induced ear edema in a dose-dependent manner. Following, multiform computerized simulation, including homology modeling, molecular docking, molecular dynamic simulation and QSAR was conducted to clarify the mechanism and regularity of activities. Overall, the present work gave vital clues about structural modifications and has profound significance in deeply scouting for bioactive potentials of FA and its derivatives

    Synthesis and biological evaluation of pentacyclic triterpenoid derivatives as potential novel antibacterial agents

    Get PDF
    A series of ursolic acid (UA), oleanolic acid (OA) and 18β-glycyrrhetinic acid (GA) derivatives were synthesized by introducing a range of substituted aromatic side-chains at the C-2 position after the hydroxyl group at C-3 position was oxidized. Their antibacterial activities were evaluated in vitro against a panel of four Staphylococcus strains. The results revealed that the introduction of aromatic side-chains at the C-2 position of GA led to the discovery of potent triterpenoid derivatives for inhibition of both drug sensitive and resistant S. aureus, while the other two series derivatives of UA and OA showed no significant antibacterial activity even at high concentrations. In particular, GA derivative showed good potency against all four strains of Staphylococcus (MIC = 1.25 - 5 μmol/L) with acceptable pharmacokinetics properties and low cytotoxicity in vitro. Molecular docking was also performed using S. aureus DNA gyrase structure to rationalize the observed antibacterial activity. Therefore, this series of GA derivatives have strong potential for the development of a new type of triterpenoid antibacterial agent

    Baichuan 2: Open Large-scale Language Models

    Full text link
    Large language models (LLMs) have demonstrated remarkable performance on a variety of natural language tasks based on just a few examples of natural language instructions, reducing the need for extensive feature engineering. However, most powerful LLMs are closed-source or limited in their capability for languages other than English. In this technical report, we present Baichuan 2, a series of large-scale multilingual language models containing 7 billion and 13 billion parameters, trained from scratch, on 2.6 trillion tokens. Baichuan 2 matches or outperforms other open-source models of similar size on public benchmarks like MMLU, CMMLU, GSM8K, and HumanEval. Furthermore, Baichuan 2 excels in vertical domains such as medicine and law. We will release all pre-training model checkpoints to benefit the research community in better understanding the training dynamics of Baichuan 2.Comment: Baichuan 2 technical report. Github: https://github.com/baichuan-inc/Baichuan
    corecore