106 research outputs found

    Optimal Location of Biomethane Gas Manufacturing Plants and Allocation of Feedstock and Liquified Carbon Product

    Get PDF
    Biomethane gas (BMG), known for its sustainability, low environmental impact, and high profitability, has received wide attention in recent years. To facilitate the process of making strategic plans for building a BMG production system, this dissertation leverages the mathematical modeling and optimization techniques to minimize the supply chain cost for such a system. Typical elements in a BMG production system consist of the local farms that produce the feedstock, the hubs that collect and store the feedstock produced by farms, the reactors that generate BMG from the feedstock transported from the hubs, the condensers that liquefy the BMG from the reactors, and the delivery points that act as end distributors and accept the liquefied BMG from condensers. The logistics of a BMG production system can be divided into four stages: farm-to-hub (F2H) stage, hub-to-reactor (H2R) stage, reactor-to-condenser (R2C) stage, and condenser-to-delivery point (C2DP) stage. Depending on the variation on the elements and stages of a BMG production system, four supply chain configurations for BMG facility locations are proposed with increasing level of complexity: single-stage, single-reactor system (SS-SRS); single-stage, multi-reactor system (SS-MRS); three-stage, multi-facility system (TS-MFS); and four-stage, multi-facility system (FS-MFS). The objective for each configuration is to locate facilities optimally and to design the transportation/pipeline connecting network such that the supply chain cost, including the total of feedstock costs, labor costs, facilities building costs, and transportation/pipeline layout costs are minimized. A systematic approach, containing mathematical modeling and heuristic design, is proposed for each configuration. Numerical experiments are conducted for each designed heuristic to verify its performance

    Optimal production and delivery scheduling models for a supply chain system of deteriorating items

    Get PDF
    The market is varying from minute to minute nowadays. Increase cooperation and pursue the optimal interest of the integrated supply chain become a more effective way than act alone in the competition. In this research, an integrated inventory policy between singleproducer and multi-buyer is developed and two inventory models are built. The first model extends the research of Lin and Lin (2007) by changing the single-buyer system to the multibuyers one. Both backorder of buyers and deteriorating items of each party (producer’s level, buyers’ level, and during transport) are considered herein. The second model is based on the research of Woo et al.(2001) and Model 1 by takes raw material cost and remanufacturing proceeds into account additional. In both model, the producer and buyers collaboratively work at minimizing their total operation cost and the problems are solved under an assumption of equal replenishments and production cycles. The algorithms to find the optimal solutions are given, and numerical examples are presented. Sensitivity for systems parameters is also analyzed and all calculations are completed by software Matlab and Maple

    Astragalus Polysaccharides Lowers Plasma Cholesterol through Mechanisms Distinct from Statins

    Get PDF
    To determine the efficacy and underlying mechanism of Astragalus polysaccharides (APS) on plasma lipids in hypercholesterolemia hamsters. The effect of APS (0.25g/kg/d) on plasma and liver lipids, fecal bile acids and neutral sterol, cholesterol absorption and synthesis, HMG-CoA reductase activity, and gene and protein expressions in the liver and small intestine was investigated in twenty-four hypercholesterolemia hamsters. Treatment periods lasted for three months. APS significantly lowered plasma total cholesterol by 45.8%, triglycerides by 30%, and low-density lipoprotein-cholesterol by 47.4%, comparable to simvastatin. Further examinations revealed that APS reduced total cholesterol and triglycerides in the liver, increased fecal bile acid and neutral sterol excretion, inhibited cholesterol absorption, and by contrast, increased hepatic cholesterol synthesis and HMG-CoA reductase activity. Plasma total cholesterol or low-density lipoprotein-cholesterol levels were significantly correlated with cholesterol absorption rates. APS up-regulated cholesterol-7α-hydroxylase and LDL-receptor gene expressions. These new findings identify APS as a potential natural cholesterol lowering agent, working through mechanisms distinct from statins

    Development of Near-Isogenic Lines in a Parthenogenetically Reproduced Thrips Species, \u3cem\u3eFrankliniella occidentalis\u3c/em\u3e

    Get PDF
    Although near-isogenic lines (NILs) can standardize genetic backgrounds among individuals, it has never been applied in parthenogenetically reproduced animals. Here, through multiple rounds of backcrossing and spinosad screening, we generated spinosad resistant NILs in the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), with a haplo-diploid reproduction system. The resultant F. occidentalis NIL-R strain maintained a resistance ratio over 30,000-fold, which was comparable to its parental resistant strain, Spin-R. More importantly, F. occidentalis NIL-R shared 98.90% genetic similarity with its susceptible parental strain Ivf03. By developing this toolset, we are able to segregate individual resistance and facilitate the mechanistic study of insecticide resistances in phloem-feeding arthropods, a group of devastating pest species reproducing sexually as well as asexually

    Development of Near-Isogenic Lines in a Parthenogenetically Reproduced Thrips Species, \u3cem\u3eFrankliniella occidentalis\u3c/em\u3e

    Get PDF
    Although near-isogenic lines (NILs) can standardize genetic backgrounds among individuals, it has never been applied in parthenogenetically reproduced animals. Here, through multiple rounds of backcrossing and spinosad screening, we generated spinosad resistant NILs in the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), with a haplo-diploid reproduction system. The resultant F. occidentalis NIL-R strain maintained a resistance ratio over 30,000-fold, which was comparable to its parental resistant strain, Spin-R. More importantly, F. occidentalis NIL-R shared 98.90% genetic similarity with its susceptible parental strain Ivf03. By developing this toolset, we are able to segregate individual resistance and facilitate the mechanistic study of insecticide resistances in phloem-feeding arthropods, a group of devastating pest species reproducing sexually as well as asexually

    Reproductive Toxicity Assessment of Surface Water of the Tai Section of the Yangtze River, China by in vitro Bioassays Coupled With: Chemical Analysis. Environ. Pollut

    Get PDF
    a b s t r a c t Reproductive toxicity of organic extracts of the surface water from the Tai section of the Yangtze River was assessed by in vitro cytotoxity assays and selected persistent organic pollutants including PCBs, OCPs and PAHs were quantified by instrumental analysis. Eleven of the US EPA priority PAHs were detected. Individual PAHs were found to range from 0.7 to 20 ng/L. Concentrations of BaP did not exceed the national drinking water source quality standard of China. However, a 286-fold concentrated organic extract induced significant reproductive toxicity in adult male rats. The morphology of cells, MTT assay and LDH release assay were all affected by exposure to the organic extracts of water. The results of the reproductive toxicity indicated that PAHs posed the greatest risk of the chemicals studied. The compounds present in the water could be bioconcentrated and result in adverse effects

    A two-step lineage reprogramming strategy to generate functionally competent human hepatocytes from fibroblasts

    Get PDF
    Terminally differentiated cells can be generated by lineage reprogramming, which is, however, hindered by incomplete conversion with residual initial cell identity and partial functionality. Here, we demonstrate a new reprogramming strategy by mimicking the natural regeneration route, which permits generating expandable hepatic progenitor cells and functionally competent human hepatocytes. Fibroblasts were first induced into human hepatic progenitor-like cells (hHPLCs), which could robustly expand in vitro and efficiently engraft in vivo. Moreover, hHPLCs could be efficiently induced into mature human hepatocytes (hiHeps) in vitro, whose molecular identity highly resembles primary human hepatocytes (PHHs). Most importantly, hiHeps could be generated in large quantity and were functionally competent to replace PHHs for drug-metabolism estimation, toxicity prediction and hepatitis B virus infection modeling. Our results highlight the advantages of the progenitor stage for successful lineage reprogramming. This strategy is promising for generating other mature human cell types by lineage reprogramming.</p

    Long-term functional maintenance of primary human hepatocytes in vitro

    Get PDF
    The maintenance of terminally differentiated cells, especially hepatocytes, in vitro has proven challenging. Here we demonstrated the long-term in vitro maintenance of primary human hepatocytes (PHHs) by modulating cell signaling pathways with a combination of five chemicals (5C). 5C-cultured PHHs showed global gene expression profiles and hepatocyte-specific functions resembling those of freshly isolated counterparts. Furthermore, these cells efficiently recapitulated the entire course of hepatitis B virus (HBV) infection over 4 weeks with the production of infectious viral particles and formation of HBV covalently closed circular DNA. Our study demonstrates that, with a chemical approach, functional maintenance of PHHs supports long-term HBV infection in vitro, providing an efficient platform for investigating HBV cell biology and antiviral drug screening.</p
    • …
    corecore