8,359 research outputs found

    MIRAI Architecture for Heterogeneous Network

    Get PDF
    One of the keywords that describe next-generation wireless communications is "seamless." As part of the e-Japan Plan promoted by the Japanese Government, the Multimedia Integrated Network by Radio Access Innovation project has as its goal the development of new technologies to enable seamless integration of various wireless access systems for practical use by 2005. This article describes a heterogeneous network architecture including a common tool, a common platform, and a common access. In particular, software-defined radio technologies are used to develop a multiservice user terminal to access different wireless networks. The common platform for various wireless networks is based on a wireless-supporting IPv6 network. A basic access network, separated from other wireless access networks, is used as a means for wireless system discovery, signaling, and paging. A proof-of-concept experimental demonstration system is available

    Bound states in two spatial dimensions in the non-central case

    Full text link
    We derive a bound on the total number of negative energy bound states in a potential in two spatial dimensions by using an adaptation of the Schwinger method to derive the Birman-Schwinger bound in three dimensions. Specifically, counting the number of bound states in a potential gV for g=1 is replaced by counting the number of g_i's for which zero energy bound states exist, and then the kernel of the integral equation for the zero-energy wave functon is symmetrized. One of the keys of the solution is the replacement of an inhomogeneous integral equation by a homogeneous integral equation.Comment: Work supported in part by the U.S. Department of Energy under Grant No. DE-FG02-84-ER4015

    CP Violation

    Get PDF
    Three possibilities for the origin of CP violation are discussed: (1) the Standard Model in which all CP violation is due to one parameter in the CKM matrix, (2) the superweak model in which all CP violation is due to new physics and (3) the Standard Model plus new physics. A major goal of B physics is to distinguish these possibilities. CP violation implies time reversal violation (TRV) but direct evidence for TRV is difficult to obtain.Comment: 13 pages, to be published in Lecture Notes of TASI-2000, edited by Jonathan L. Rosner, World Scientific, 200

    A Three-Flavor AdS/QCD Model with a Back-Reacted Geometry

    Full text link
    A fully back-reaction geometry model of AdS/QCD including the strange quark is described. We find that with the inclusion of the strange quark the impact on the metric is very small and the final predictions are changed only negligibly.Comment: 10 pages, 2 figures; references revised, minor change for caption of fig

    Quasi-local Energy for Spherically Symmetric Spacetimes

    Full text link
    We present two complementary approaches for determining the reference for the covariant Hamiltonian boundary term quasi-local energy and test them on spherically symmetric spacetimes. On the one hand, we isometrically match the 2-surface and extremize the energy. This can be done in two ways, which we call programs I (without constraint) and II (with additional constraints). On the other hand, we match the orthonormal 4-frames of the dynamic and the reference spacetimes. Then, if we further specify the observer by requiring the reference displacement to be the timelike Killing vector of the reference, the result is the same as program I, and the energy can be positive, zero, or even negative. If, instead, we require that the Lie derivatives of the two-area along the displacement vector in both the dynamic and reference spacetimes to be the same, the result is the same as program II, and it satisfies the usual criteria: the energies are non-negative and vanish only for Minkowski (or anti-de Sitter) spacetime.Comment: 16 pages, no figure

    AdS/QCD Phenomenological Models from a Back-Reacted Geometry

    Get PDF
    We construct a fully back-reacted holographic dual of a four-dimensional field theory which exhibits chiral symmetry breaking. Two possible models are considered by studying the effects of a five-dimensional field, dual to the qqˉq\bar{q} operator. One model has smooth geometry at all radii and the other dynamically generates a cutoff at finite radius. Both of these models satisfy Einstein's field equations. The second model has only three free parameters, as in QCD, and we show that this gives phenomenologically consistent results. We also discuss the possibility that in order to obtain linear confinement from a back-reacted model it may be necessary to consider the condensate of a dimension two operator.Comment: 13 pages, 4 figures, Replaced with minor correction

    Sources of CP Violation in the Two-Higgs Doublet Model

    Get PDF
    Assuming CP violation arises solely through the Higgs potential, we develop the most general two-Higgs doublet model. There is no discrete symmetry that distinguishes the two Higgs bosons. It is assumed that an approximate global family symmetry sufficiently suppresses flavor-changing neutral scalar interactions. In addition to a CKM phase, neutral boson mixing, and superweak effects, there can be significant CP violation due to charged Higgs boson exchange. The value of ϵ/ϵ\epsilon'/\epsilon due to this last effect could be as large as in the standard model.Comment: 8 pages, RevTex, (appear in Phys. Rev. Lett. 73, (1994) 1762 ), CMU-HEP94-1

    Spin dynamics in high-mobility two-dimensional electron systems

    Full text link
    Understanding the spin dynamics in semiconductor heterostructures is highly important for future semiconductor spintronic devices. In high-mobility two-dimensional electron systems (2DES), the spin lifetime strongly depends on the initial degree of spin polarization due to the electron-electron interaction. The Hartree-Fock (HF) term of the Coulomb interaction acts like an effective out-of-plane magnetic field and thus reduces the spin-flip rate. By time-resolved Faraday rotation (TRFR) techniques, we demonstrate that the spin lifetime is increased by an order of magnitude as the initial spin polarization degree is raised from the low-polarization limit to several percent. We perform control experiments to decouple the excitation density in the sample from the spin polarization degree and investigate the interplay of the internal HF field and an external perpendicular magnetic field. The lifetime of spins oriented in the plane of a [001]-grown 2DES is strongly anisotropic if the Rashba and Dresselhaus spin-orbit fields are of the same order of magnitude. This anisotropy, which stems from the interference of the Rashba and the Dresselhaus spin-orbit fields, is highly density-dependent: as the electron density is increased, the kubic Dresselhaus term becomes dominant and reduces the anisotropy.Comment: 13 pages, 6 figure

    Three Flavour QCD from the Holographic Principle

    Full text link
    Building on recent research into five-dimensional holographic models of QCD, we extend this work by including the strange quark with an SU(3)_L\times SU(3)_R gauge symmetry in the five-dimensional theory. In addition we deform the naive AdSAdS metric with a single parameter, thereby breaking the conformal symmetry at low energies. The vector and axial vector sectors are studied in detail and both the masses and decay constants are calculated with the additional parameters. It is shown that with a single extra degree of freedom, exceptional agreement with experimental results can be obtained in the light quark sector while the kaon sector is found to give around 10% agreement with lattice results. We propose some simple extensions to this work to be taken up in future research.Comment: 9 pages, 1 figure, references adde

    Spin-spin correlation functions of the XXZ-1/2 Heisenberg chain in a magnetic field

    Full text link
    Using algebraic Bethe ansatz and the solution of the quantum inverse scattering problem, we compute compact representations of the spin-spin correlation functions of the XXZ-1/2 Heisenberg chain in a magnetic field. At lattice distance m, they are typically given as the sum of m terms. Each term n of this sum, n = 1,...,m is represented in the thermodynamic limit as a multiple integral of order 2n+1; the integrand depends on the distance as the power m of some simple function. The root of these results is the derivation of a compact formula for the multiple action on a general quantum state of the chain of transfer matrix operators for arbitrary values of their spectral parameters.Comment: 34 page
    corecore