5 research outputs found

    Distinguishing between Charge-Transfer Mechanisms at Organic/Inorganic Interfaces Employing Hybrid Functionals

    Get PDF
    When modeling inorganic/organic interfaces with density functional theory (DFT), the outcome often depends on the chosen functional. Hybrid functionals, which employ a fraction of Hartree–Fock exchange α, tend to give better results than the more commonly applied semilocal functionals, because they remove or at least mitigate the unphysical electron self-interaction. However, the choice of α is not straightforward, as its effect on observables depends on the physical properties of the investigated system, such as the size of the molecule and the polarizability of the substrate. In this contribution, we demonstrate this impact exemplarily for tetrafluoro-1,4-benzoquinone on semiconducting (copper-I-oxide Cu<sub>2</sub>O) and metallic (Cu) substrates and explore how the simulated charge transfer depends on α. We determine the value α* that marks the transition point between spurious over-localization and over-delocalization of charges. This allows us to shed light on the interplay between the value of α* and the physical properties of the interface. We find that on the inert semiconducting substrate, α* strongly depends on surface screening. Furthermore, α has a significant impact on the amount of charge transfer and, in particular, the charge localization. Conversely, for the adsorption on Cu, α affects only the amount of transferred charge, but not its localization, which is a consequence of strong hybridization. Finally, we discuss limitations to the predictive power of DFT for modeling charge transfer at inorganic/organic interfaces and explain why the choice of a “correct” amount of Hartree–Fock exchange is difficult, if not impossible. However, we argue why simulations still provide valuable insights into the charge-transfer mechanism at organic/inorganic interfaces and describe how α can be chosen sensibly to simulate any given system

    Magnetic configurations of open-shell molecules on metals: The case of CuPc and CoPc on silver

    Get PDF
    For nanostructured interfaces between open-shell molecules and metal surfaces that involve charge transfer upon adsorption, the investigation of molecular magnetic properties is an interesting yet difficult task, because in principle different magnetic configurations with distinct properties can be found. Here, we study the magnetic properties of CuPc-Ag and CoPc-Ag interfaces, which constitute interesting test cases because charge is transferred to the initially open-shell Pc molecules upon adsorption. Using hybrid density functional theory, we examine the stability of the various magnetic configurations occurring at these nanoscale interfaces, as well as for the corresponding gas-phase anions, and compare our findings to those of previous experimental studies. For CuPc-Ag, we identify a high-spin triplet configuration as the most likely configuration at the interface, whereas for CoPc-Ag a quenching of the total magnetic moment is found. Interestingly, such quenching is consistent with two distinctly different interfacial electronic configurations. These important differences in the magnetic properties of CuPc and CoPc on Ag are rationalized by variations in the interaction of their central metal atoms with the substrate. Our work facilitates a deeper understanding of the magnetic configuration and interlinked electronic-structure properties of molecule-metal interfaces. Furthermore, it highlights the necessity of an appropriate choice of methodology in tandem with a detailed evaluation of the different emerging magnetic properties

    Numerical Quality Control for DFT-based Materials Databases

    Get PDF
    Electronic-structure theory is a strong pillar of materials science. Many different computer codes that employ different approaches are used by the community to solve various scientific problems. Still, the precision of different packages has only recently been scrutinized thoroughly, focusing on a specific task, namely selecting a popular density functional, and using unusually high, extremely precise numerical settings for investigating 71 monoatomic crystals. Little is known, however, about method- and code-specific uncertainties that arise under numerical settings that are commonly used in practice. We shed light on this issue by investigating the deviations in total and relative energies as a function of computational parameters. Using typical settings for basis sets and k-grids, we compare results for 71 elemental and 63 binary solids obtained by three different electronic-structure codes that employ fundamentally different strategies. On the basis of the observed trends, we propose a simple, analytical model for the estimation of the errors associated with the basis-set incompleteness. We cross-validate this model using ternary systems obtained from the NOMAD Repository and discuss how our approach enables the comparison of the heterogeneous data present in computational materials databases.Comment: 7 pages, 4 figure

    Adsorption Behavior of Nonplanar Phthalocyanines: Competition of Different Adsorption Conformations

    No full text
    Using density functional theory augmented with state-of-the-art van der Waals corrections, we studied the geometric and electronic properties of nonplanar chlorogallium-phthalocyanine GaClPc molecules adsorbed on Cu(111). Comparing these results with published experimental data for adsorption heights, we found indications for breaking of the metal–halogen bond when the molecule is heated during or after the deposition process. Interestingly, the work-function change induced by this dissociated geometry is the same as that computed for an intact adsorbate layer in the “Cl-down” configuration, with both agreeing well with the experimental photoemission data. This is unexpected, as the chemical natures of the adsorbates and the adsorption distances are markedly different in the two cases. The observation is explained as a consequence of Fermi-level pinning due to fractional charge transfer at the interface. Our results show that rationalizing the adsorption configurations on the basis of electronic interface properties alone can be ambiguous and that additional insight from dispersion-corrected DFT simulations is desirable
    corecore