70 research outputs found

    Cost to Primary Care Practices of Responding to Payer Requests for Quality and Performance Data

    Get PDF
    PURPOSE We wanted to determine how much it costs primary care practices to participate in programs that require them to gather and report data on care quality indicators

    Identification of genes differentially expressed in a resistant reaction to Mycosphaerella pinodes in pea using microarray technology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ascochyta blight, caused by <it>Mycosphaerella pinodes </it>is one of the most important pea pathogens. However, little is known about the genes and mechanisms of resistance acting against <it>M. pinodes </it>in pea. Resistance identified so far to this pathogen is incomplete, polygenic and scarce in pea, being most common in <it>Pisum </it>relatives. The identification of the genes underlying resistance would increase our knowledge about <it>M. pinodes-</it>pea interaction and would facilitate the introgression of resistance into pea varieties. In the present study differentially expressed genes in the resistant <it>P. sativum </it>ssp. <it>syriacum </it>accession P665 comparing to the susceptible pea cv. Messire after inoculation with <it>M. pinodes </it>have been identified using a <it>M. truncatula </it>microarray.</p> <p>Results</p> <p>Of the 16,470 sequences analysed, 346 were differentially regulated. Differentially regulated genes belonged to almost all functional categories and included genes involved in defense such as genes involved in cell wall reinforcement, phenylpropanoid and phytoalexins metabolism, pathogenesis- related (PR) proteins and detoxification processes. Genes associated with jasmonic acid (JA) and ethylene signal transduction pathways were induced suggesting that the response to <it>M. pinodes </it>in pea is regulated via JA and ET pathways. Expression levels of ten differentially regulated genes were validated in inoculated and control plants using qRT-PCR showing that the P665 accession shows constitutively an increased expression of the defense related genes as peroxidases, disease resistance response protein 39 (DRR230-b), glutathione S-transferase (GST) and 6a-hydroxymaackiain methyltransferase.</p> <p>Conclusions</p> <p>Through this study a global view of genes expressed during resistance to <it>M. pinodes </it>has been obtained, giving relevant information about the mechanisms and pathways conferring resistance to this important disease. In addition, the <it>M. truncatula </it>microarray represents an efficient tool to identify candidate genes controlling resistance to <it>M. pinodes </it>in pea.</p

    Crop Updates - 2003 Pulses

    Get PDF
    This session covers fifty one papers from different authors 2002 PULSE INDUSTRY HIGHLIGHTS CONTRIBUTORS BACKGROUND 2002 REGIONAL ROUNDUP 1.Northern Agricultural Region, M. Harries, Department of Agriculture 2.Central agricultural Region, R. French and I. Pritchard, Department of Agriculture 3.Great Southern and Lakes, R. Beermier, N. Poulish and S. White, Department of Agriculture 4.Esperance Mallee, M. Seymour, Department of Agriculture PULSE PRODUCTION ECONOMY AND GENETIC IMPROVEMENT 5.Faba Bean, P. White, Department of Agriculture 6.Germplasm evaluation, P. White, T. Pope, M. Harries and M. Seymour, Department of Agriculture 7.Row spacing and sowing rate, M. Seymour, Department of Agriculture 8.Tolerance to post emergent herbicides, M. Seymour, M. Harries, R. Beermier, M. Blyth and L. Young, Department of Agriculture 9.Investigation of environmental staining and storage discolouration, N. Abbas1,2, J. Plummer1, P. White3, D. Harris4 and K. Siddique1,2, 1Plant Biology, The University of Western Australia, 2CLIMA, The University of Western Australia, 3Department of Agriculture, 4Chemistry Centre of Western Australia. Desi chickpea 10.Breeding highlights, T. Khan1,2 and K. Siddique2 1Department of Agriculture, 2CLIMA, The University of Western Australia 11. Variety evaluation, T. Khan and K. Regan, Department of Agriculture 12. Residual effect of chickpea row spacing and sowing rate on wheat yield, G. Riethmuller and B. MacLeod, Department of Agriculture 13. Genotype x environmental interaction studies to help explain adaptation, J. Berger1, N. Turner1,2, K. Siddique1, 1CLIMA, The University of Western Australia, 2CSIRO Plant Industry 14. Genetic characterisation of wild relatives, F. Shan and H. Clarke, CLIMA, The University of Western Australia 15. Tolerance to chilling at flowering, H. Clarke, CLIMA, The University of Western Australia 16. Kabuli chickpea, K. Regan, Department of Agriculture 17. Premium quality varieties for the Ord River Irrigation Area, K. Siddique1, K. Regan2 and P. Smith2 1CLIMA, The University of Western Australia, 2Department of Agriculture 18. Development of aschochyta resistant varieties for Australia, K. Siddique1, K. Regan2 and M. Baker2 1CLIMA, University of Western Australia, 2Department of Agriculture Field pea 19. Breeding highlights, T. Khan and B. French, Department of Agriculture 20. Variety evaluation, T. Khan, Department of Agriculture 21. Specialty types for the high rainfall regions, P. White and T. Khan, Department of Agriculture 22. Are new varieties more sensitive to delayed sowing than Dundale? R. French, M. Seymour and R. Beermier, Department of Agriculture 23. Does the size of sown seed affect seed size and yield at harvest? R. Beermier and N. Poulish, Department of Agriculture 24. Tolerance to post emergent herbicides, H. Dhammu, T. Piper and D. Nicholson, Department of Agriculture 25. Lentil, K. Regan, Department of Agriculture 26. Variety evaluation, K. Regan and M. Harries, Department of Agriculture 27. Interstate evaluation of advanced breeding lines, K. Regan1 and M. Materne2 1Department of Agriculture, 2Victorian Institute for Dryland Agriculture, Agriculture Victoria 28. Timing of harvest for the best seed yield, M. Harries and M. Blyth, Department of Agriculture 29. Tolerance to post emergent herbicides, M. Harries and D. Nicholson, Department of Agriculture, H. Dhammu, T. Piper and L. Young, Department of Agriculture 30. Row spacing and stubble, G. Riethmuller, Department of Agriculture Pulse species 31. High value pulses for the high rainfall areas, N. Poulish1, P. White1,2 and K. Siddique1,2 , 1Department of Agriculture, 2CLIMA, The University of Western Australia 32. Alternative Rhizobium inoculant carrier technologies, J. Howieson and R. Yates, Centre for Rhizobium Studies (CRS), Murdoch University 33. Time of harvest to improve seed yield and quality of pulses, G. Riethmuller and R. French, Department of Agriculture 34. Phosphorus and zinc responses in pulses, S. Loss1, Z. Rengel2, B. Bowden3, M. Bolland3 and K. Siddique4 , 1Wesfarmers CSBP, 2Soil Science and Plant Nutrition, The University of Western Australia, 3Department of Agriculture, 4CLIMA, The University of Western Australia 35. Robust protocols for doubled haploid production in field pea and chickpea, J. Croser and K. Siddique, CLIMA, The University of Western Australia DEMONSTRATION OF PULSES IN THE FARMING SYSTEM 36. Field pea and lentil on clayed sandplain, M. Seymour, Department of Agriculture 37. Field pea variety demonstration, M. Harries and M. Blyth, Department of Agriculture 38. The benefit of field peas compared to lupins, R. Beermier, Department of Agriculture DISEASE AND PEST MANAGEMENT 39. Ascochyta blight of chickpea, B. MacLeod, Department of Agriculture 40. Management of chickpeas with improved ascochyta resistance, B. Macleod, A. Harrod, M. Harries and M. Blyth, Department of Agriculture 41. Chlorothalonil provides the most effective control, B. Macleod, A. Harrod, M. Harries and M. Blyth, Department of Agriculture 42. Importance of early sprays and value of seed dressing (post emergence), B. Macleod and A. Harrod, Department of Agriculture 43. A windborne stage of ascochyta blight in WA, J. Galloway and B. MacLeod, Department of Agriculture Ascochyta disease of pulses 44. Geographic location effects ascochyta spore maturation on pulse stubble, J. Galloway and B. MacLeod, Department of Agriculture Blackspot of field pea 45. Rapid recurrent selection to improve resistance to black spot, C. Beeck1, J. Wroth1, W. Cowling1 and T. Khan2, 1Plant Science, The University of Western Australia, 2Department of Agriculture 46. Survival of blackspot on old field pea stubble, J. Galloway and B. MacLeod, Department of Agriculture 47. Blackspot spores mature earlier in the southern regions, M. Salam, J. Galloway, A. Diggle and B. MacLeod, Department of Agriculture Viruses in pulses 48. Early insecticide application suppresses spread of Beet Western Yellows virus in field pea, R. Jones, B. Coutts and L. Smith, Department of Agriculture, and CLIMA, The University of Western Australia Insect pests and nematodes 49. Incorporation of pea weevil resistance from Pisum fulvum into field pea, O. Byrne1 and D. Hardie2, 1CLIMA, The University of Western Australia 2Department of Agriculture 50. Resistance to Helicoverpa in wild species of chickpea, J. Ridsdill-Smith1, H. Sharma2 and K. Mann1, 1CSIRO Entomology, Western Australia, 2 ICRISAT, Hyderabad, India 51. Relative hosting ability of field pea genotypes to root lesion nematode, S. Kelly, S. Sharma, H. Hunter and V. Vanstone, Department of Agriculture ACKNOWLEDGEMENTS APPENDIX I: Publications by Pulse Productivity Project Staff 2002 APPENDIX II: Summary of previous results APPENDIX III: List of common acronym

    Predictions of the results of laboratory tests on a clay using a critical state model

    No full text
    An elastic-plastic model for describing the stress-strain behaviour of a clay is presented. The model is based on the Modified Cam-Clay model, but includes an additional yield surface to model failure of overconsolidated samples on a Hvorslev surface. The model is used to predict the behaviour of a kaolinite in a number of repeated loading tests, based on the results of monotonic triaxial compresson and extension tests. -from Author

    Reliability assessment of diaphragm wall deflections in soft clays

    No full text
    For excavations in built-up areas with deep deposits of soft clays, it is essential to control ground movements to minimize damage to adjacent structures and facilities. This is commonly carried out by controlling the deflections of the retaining wall system. The limiting wall deflection or serviceability limit state is typically taken to be a percentage of the excavation height. In this study, extensive plane strain finite element analyses have been carried out to examine the excavation-induced wall deflections for a deep deposit of soft clay supported by diaphragm walls and bracing. Based on the numerical results, two polynomial regression approaches were used to develop the equations for estimating the maximum wall deflection. This paper describes how the developed equations can be used to perform reliability analysis of the diaphragm wall serviceability limit state to estimate the probability of exceeding the limiting wall deflection.Accepted versio
    • …
    corecore