8 research outputs found

    SCH 48973: a Potent, Broad-Spectrum, Antienterovirus Compound.

    Get PDF
    SCH 48973 is a novel molecule with potent, selective, antienterovirus activity. In assays of the cytopathic effect against five picornaviruses, SCH 48973 had antiviral activity (50% inhibitory concentrations [IC50s]) of 0.02 to 0.11 microg/ml, with no detectable cytotoxicity at 50 microg/ml. SCH 48973 inhibited 80% of 154 recent human enterovirus isolates at an IC50 of 0.9 microg/ml. The antiviral activity of SCH 48973 is derived from its specific interaction with viral capsid, as confirmed by competition binding studies. The affinity constant (Ki) for SCH 48973 binding to poliovirus was 8.85 x 10(-8) M. In kinetic studies, a maximum of approximately 44 molecules of SCH 48973 were bound to poliovirus capsid. SCH 48973 demonstrated efficacy in a murine poliovirus model of enterovirus disease. SCH 48973 increased the survival of infected mice when it was administered orally at dosages of 3 to 20 mg/kg of body weight/day. Oral administration of SCH 48973 also reduced viral titers in the brains of infected mice. On the basis of its in vitro and in vivo profiles, SCH 48973 represents a potential candidate for therapeutic intervention against enterovirus infections

    Conserved C-Terminal Threonine of Hepatitis C Virus NS3 Regulates Autoproteolysis and Prevents Product Inhibition

    No full text
    Inspection of over 250 hepatitis C virus (HCV) genome sequences shows that a threonine is strictly conserved at the P1 position in the NS3-NS4A (NS3-4A) autoproteolysis junction, while a cysteine is maintained as the P1 residue in all of the putative trans cleavage sites (NS4A-4B, NS4B-5A, and NS5A-5B). To understand why T631 is conserved at the NS3-4A junction of HCV, a series of in vitro transcription-translation studies were carried out using wild-type and mutant (T631C) NS3-4A constructs bearing native, truncated, and mutant NS4A segments. The autocleavage of the wild-type junction was found to be dependent on the presence of the central cofactor domain of NS4A (residues 21 to 34). In contrast, all NS3-4A T631C mutant proteins underwent self-cleavage even in the absence of the cofactor. Subgenomic replicons derived from the Con1 strain of HCV and bearing the T631C mutation showed reduced levels of colony formation in transfection studies. Similarly, replicons derived from a second genotype 1b virus, HCV-N, demonstrated a comparable reduction in replication efficiency in transient-transfection assays. These data suggest that the threonine is conserved at position 631 because it serves two functions: (i) to slow processing at the NS3-4A cleavage site, ensuring proper intercalation of the NS4A cofactor with NS3 prior to polyprotein scission, and (ii) to prevent subsequent product inhibition by the NS3 C terminus
    corecore