2,838 research outputs found

    Evaluating the impact of a longitudinal patient case on the development of professionalism and professional identity

    Get PDF
    This article explores the student outcomes of a progressive case on the development of professional identity and professionalism within first-year student pharmacists

    Characteristics of Two-Dimensional Quantum Turbulence in a Compressible Superfluid

    Get PDF
    Under suitable forcing a fluid exhibits turbulence, with characteristics strongly affected by the fluid's confining geometry. Here we study two-dimensional quantum turbulence in a highly oblate Bose-Einstein condensate in an annular trap. As a compressible quantum fluid, this system affords a rich phenomenology, allowing coupling between vortex and acoustic energy. Small-scale stirring generates an experimentally observed disordered vortex distribution that evolves into large-scale flow in the form of a persistent current. Numerical simulation of the experiment reveals additional characteristics of two-dimensional quantum turbulence: spontaneous clustering of same-circulation vortices, and an incompressible energy spectrum with k−5/3k^{-5/3} dependence for low wavenumbers kk and k−3k^{-3} dependence for high kk.Comment: 7 pages, 7 figures. Reference [29] updated for v

    The Precision Array for Probing the Epoch of Reionization: 8 Station Results

    Full text link
    We are developing the Precision Array for Probing the Epoch of Reionization (PAPER) to detect 21cm emission from the early Universe, when the first stars and galaxies were forming. We describe the overall experiment strategy and architecture and summarize two PAPER deployments: a 4-antenna array in the low-RFI environment of Western Australia and an 8-antenna array at our prototyping site in Green Bank, WV. From these activities we report on system performance, including primary beam model verification, dependence of system gain on ambient temperature, measurements of receiver and overall system temperatures, and characterization of the RFI environment at each deployment site. We present an all-sky map synthesized between 139 MHz and 174 MHz using data from both arrays that reaches down to 80 mJy (4.9 K, for a beam size of 2.15e-5 steradians at 154 MHz), with a 10 mJy (620 mK) thermal noise level that indicates what would be achievable with better foreground subtraction. We calculate angular power spectra (Câ„“C_\ell) in a cold patch and determine them to be dominated by point sources, but with contributions from galactic synchrotron emission at lower radio frequencies and angular wavemodes. Although the cosmic variance of foregrounds dominates errors in these power spectra, we measure a thermal noise level of 310 mK at â„“=100\ell=100 for a 1.46-MHz band centered at 164.5 MHz. This sensitivity level is approximately three orders of magnitude in temperature above the level of the fluctuations in 21cm emission associated with reionization.Comment: 13 pages, 14 figures, submitted to AJ. Revision 2 corrects a scaling error in the x axis of Fig. 12 that lowers the calculated power spectrum temperatur

    Quantum state of two trapped Bose-Einstein condensates with a Josephson coupling

    Full text link
    We consider the precise quantum state of two trapped, coupled Bose Einstein condensates in the two-mode approximation. We seek a representation of the state in terms of a Wigner-like distribution on the two-mode Bloch sphere. The problem is solved using a self-consistent rotation of the unknown state to the south pole of the sphere. The two-mode Hamiltonian is projected onto the harmonic oscillator phase plane, where it can be solved by standard techniques. Our results show how the number of atoms in each trap and the squeezing in the number difference depend on the physical parameters. Considering negative scattering lengths, we show that there is a regime of squeezing in the relative phase of the condensates which occurs for weaker interactions than the superposition states found by Cirac et al% (quant-ph/9706034, 13 June 1997). The phase squeezing is also apparent in mildly asymmetric trap configurations.Comment: 26 pages, 11 figure

    Finite-temperature dynamics of a single vortex in a Bose-Einstein condensate: Equilibrium precession and rotational symmetry breaking

    Full text link
    We consider a finite-temperature Bose-Einstein condensate in a quasi-two-dimensional trap containing a single precessing vortex. We find that such a configuration arises naturally as an ergodic equilibrium of the projected Gross-Pitaevskii equation, when constrained to a finite conserved angular momentum. In an isotropic trapping potential the condensation of the classical field into an off-axis vortex state breaks the rotational symmetry of the system. We present a methodology to identify the condensate and the Goldstone mode associated with the broken rotational symmetry in the classical-field model. We also examine the variation in vortex trajectories and thermodynamic parameters of the field as the energy of the microcanonical field simulation is varied.Comment: 21 pages, 10 figures. v2: Minor changes and corrections to figures and text. To appear in PR

    Dynamical thermalization and vortex formation in stirred 2D Bose-Einstein condensates

    Full text link
    We present a quantum mechanical treatment of the mechanical stirring of Bose-Einstein condensates using classical field techniques. In our approach the condensate and excited modes are described using a Hamiltonian classical field method in which the atom number and (rotating frame) energy are strictly conserved. We simulate a T = 0 quasi-2D condensate perturbed by a rotating anisotropic trapping potential. Vacuum fluctuations in the initial state provide an irreducible mechanism for breaking the initial symmetries of the condensate and seeding the subsequent dynamical instability. Highly turbulent motion develops and we quantify the emergence of a rotating thermal component that provides the dissipation necessary for the nucleation and motional-damping of vortices in the condensate. Vortex lattice formation is not observed, rather the vortices assemble into a spatially disordered vortex liquid state. We discuss methods we have developed to identify the condensate in the presence of an irregular distribution of vortices, determine the thermodynamic parameters of the thermal component, and extract damping rates from the classical field trajectories.Comment: 22 pages, 15 figures. v2: Minor refinements made at suggestion of referee. Discussion of other treatments revised. To appear in Phys. Rev.

    Quantum Dynamics of Three Coupled Atomic Bose-Einstein Condensates

    Get PDF
    The simplest model of three coupled Bose-Einstein Condensates (BEC) is investigated using a group theoretical method. The stationary solutions are determined using the SU(3) group under the mean field approximation. This semiclassical analysis using the system symmetries shows a transition in the dynamics of the system from self trapping to delocalization at a critical value for the coupling between the condensates. The global dynamics are investigated by examination of the stable points and our analysis shows the structure of the stable points depends on the ratio of the condensate coupling to the particle-particle interaction, undergoes bifurcations as this ratio is varied. This semiclassical model is compared to a full quantum treatment, which also displays the dynamical transition. The quantum case has collapse and revival sequences superposed on the semiclassical dynamics reflecting the underlying discreteness of the spectrum. Non-zero circular current states are also demonstrated as one of the higher dimensional effects displayed in this system.Comment: Accepted to PR

    Measurements of Relative Phase in Binary Mixtures of Bose-Einstein Condensates

    Full text link
    We have measured the relative phase of two Bose-Einstein condensates (BEC) using a time-domain separated-oscillatory-field condensate interferometer. A single two-photon coupling pulse prepares the double condensate system with a well-defined relative phase; at a later time, a second pulse reads out the phase difference accumulated between the two condensates. We find that the accumulated phase difference reproduces from realization to realization of the experiment, even after the individual components have spatially separated and their relative center-of-mass motion has damped.Comment: 12 pages, 3 figure

    Spatial coherence and density correlations of trapped Bose gases

    Full text link
    We study first and second order coherence of trapped dilute Bose gases using appropriate correlation functions. Special attention is given to the discussion of second order or density correlations. Except for a small region around the surface of a Bose-Einstein condensate the correlations can be accurately described as those of a locally homogeneous gas with a spatially varying chemical potential. The degrees of first and second order coherence are therefore functions of temperature, chemical potential, and position. The second order correlation function is governed both by the tendency of bosonic atoms to cluster and by a strong repulsion at small distances due to atomic interactions. In present experiments both effects are of comparable magnitude. Below the critical temperature the range of the bosonic correlation is affected by the presence of collective quasi-particle excitations. The results of some recent experiments on second and third order coherence are discussed. It is shown that the relation between the measured quantities and the correlation functions is much weaker than previously assumed.Comment: RevTeX, 25 pages with 7 Postscript figure
    • …
    corecore