17 research outputs found

    Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study

    Get PDF
    Background The SARS-CoV-2 variant B.1.1.7 was first identified in December, 2020, in England. We aimed to investigate whether increases in the proportion of infections with this variant are associated with differences in symptoms or disease course, reinfection rates, or transmissibility. Methods We did an ecological study to examine the association between the regional proportion of infections with the SARS-CoV-2 B.1.1.7 variant and reported symptoms, disease course, rates of reinfection, and transmissibility. Data on types and duration of symptoms were obtained from longitudinal reports from users of the COVID Symptom Study app who reported a positive test for COVID-19 between Sept 28 and Dec 27, 2020 (during which the prevalence of B.1.1.7 increased most notably in parts of the UK). From this dataset, we also estimated the frequency of possible reinfection, defined as the presence of two reported positive tests separated by more than 90 days with a period of reporting no symptoms for more than 7 days before the second positive test. The proportion of SARS-CoV-2 infections with the B.1.1.7 variant across the UK was estimated with use of genomic data from the COVID-19 Genomics UK Consortium and data from Public Health England on spike-gene target failure (a non-specific indicator of the B.1.1.7 variant) in community cases in England. We used linear regression to examine the association between reported symptoms and proportion of B.1.1.7. We assessed the Spearman correlation between the proportion of B.1.1.7 cases and number of reinfections over time, and between the number of positive tests and reinfections. We estimated incidence for B.1.1.7 and previous variants, and compared the effective reproduction number, Rt, for the two incidence estimates. Findings From Sept 28 to Dec 27, 2020, positive COVID-19 tests were reported by 36 920 COVID Symptom Study app users whose region was known and who reported as healthy on app sign-up. We found no changes in reported symptoms or disease duration associated with B.1.1.7. For the same period, possible reinfections were identified in 249 (0·7% [95% CI 0·6–0·8]) of 36 509 app users who reported a positive swab test before Oct 1, 2020, but there was no evidence that the frequency of reinfections was higher for the B.1.1.7 variant than for pre-existing variants. Reinfection occurrences were more positively correlated with the overall regional rise in cases (Spearman correlation 0·56–0·69 for South East, London, and East of England) than with the regional increase in the proportion of infections with the B.1.1.7 variant (Spearman correlation 0·38–0·56 in the same regions), suggesting B.1.1.7 does not substantially alter the risk of reinfection. We found a multiplicative increase in the Rt of B.1.1.7 by a factor of 1·35 (95% CI 1·02–1·69) relative to pre-existing variants. However, Rt fell below 1 during regional and national lockdowns, even in regions with high proportions of infections with the B.1.1.7 variant. Interpretation The lack of change in symptoms identified in this study indicates that existing testing and surveillance infrastructure do not need to change specifically for the B.1.1.7 variant. In addition, given that there was no apparent increase in the reinfection rate, vaccines are likely to remain effective against the B.1.1.7 variant. Funding Zoe Global, Department of Health (UK), Wellcome Trust, Engineering and Physical Sciences Research Council (UK), National Institute for Health Research (UK), Medical Research Council (UK), Alzheimer's Society

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Mudança organizacional: uma abordagem preliminar

    Full text link

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Multi-marker metabarcoding resolves subtle variations in freshwater condition: Bioindicators, ecological traits, and trophic interactions

    No full text
    Freshwater systems are experiencing rapid biodiversity losses resulting from high rates of habitat degradation. Ecological condition is typically determined through identifying either macroinvertebrate or diatom bioindicator assemblages and comparing them to their known tolerance to stressors. These comparisons are typically conducted at family or genus levels depending on the availability of taxonomic keys and expertise for focal groups. The objective of this study was to test whether a more taxonomically comprehensive assessment of communities in benthic samples can provide a different perspective of ecological conditions. DNA metabarcoding was used to identify macroinvertebrates and diatoms from kick-net samples collected from sites with different habitat status. Sites with ‘good’ condition were associated with higher beta diversity as well as slightly higher directed connectance and modularity indicating higher resilience compared with ‘fair’ condition sites. Indicator value and correlation analyses used DNA metabarcoding data to detect 29 site condition indicator species consistent with known bioindicators and expected relative tolerances. DNA metabarcoding and trophic network analysis also recovered 11 keystone taxa. This study demonstrates the importance of taxonomic breadth across trophic levels for generating biotic data to study ecosystem status, with the potential to scale-up ecological assessments of freshwater condition, trophic stability, and resilience

    Functional traits link anthropogenic impact and disturbance regimes driving ecosystem function in a floodplain wetland complex

    No full text
    Floodplains are disturbance-driven ecosystems with high spatial and temporal habitat diversity, making them both highly productive and hosts to high biodiversity. The unpredictable timing of flood and drought years creates a mosaic of habitat patches at different stages of succession, while water level fluctuation directly influences macrophyte community dynamics, and thus habitat structure. This habitat complexity and diversity of disturbance regimes makes floodplains an ideal ecosystem in which to examine the links between biodiversity, traits and ecosystem function. With up to 90% of floodplains in North America and Europe altered to the point of functional extinction, it is particularly imperative to study and conserve those that remain intact, such as the Lower Saint John River and its associated floodplain, including the Grand Lake Meadows and Portobello Creek wetland complex. Despite the rise in trait-based science, taxonomic resolution has imposed limitations, especially in wetland and floodplain ecosystems where communities are vastly understudied compared to their riverine counterparts. Compared to traditional biomonitoring, DNA-based biomonitoring from high-throughput genomics sequencing methods is powerful in that it can reliably characterize community composition in unprecedented detail, allowing us to assess how disturbance and environmental filters interact with invertebrate traits and ecosystem function. Using structural equation analysis, we take a whole ecosystem approach to examine ecosystem health across a floodplain disturbance gradient. We focus chiefly on how anthropogenic alteration within watersheds affects downstream floodplain wetlands, how the resulting patch diversity shapes communities and, finally, how those communities influence ecosystem function through trait diversity metrics. We also examine and compare which traits are associated with crucial ecosystem gradients

    Methodological considerations for monitoring soil/litter arthropods in tropical rainforests using DNA metabarcoding, with a special emphasis on ants, springtails and termites

    No full text
    Robust data to refute or support claims of global insect decline are currently lacking, particularly for the soil fauna in the tropics. DNA metabarcoding represents a powerful approach for rigorous spatial and temporal monitoring of the taxonomically challenging soil fauna. Here, we provide a detailed field protocol, which was successfully applied in Barro Colorado Island (BCI) in Panama, to collect soil samples and arthropods in a tropical rainforest, to be later processed with metabarcoding. We also estimate the proportion of soil/litter ant, springtail and termite species from the local fauna that can be detected by metabarcoding samples obtained either from Berlese-Tullgren (soil samples), Malaise or light traps. Each collecting method detected a rather distinct fauna. Soil and Malaise trap samples detected 213 species (73%) of all target species. Malaise trap samples detected many ant species, whereas soil samples were more efficient at detecting springtail and termite species. With respect to long-term monitoring of soil-dwelling and common species (more amenable to statistical trends), the best combination of two methods were soil and light trap samples, detecting 94% of the total of common species. A protocol including 100 soil, 40 Malaise and 80 light trap samples annually processed by metabarcoding would allow the long-term monitoring of at least 11%, 18% and 16% of species of soil/litter ants, springtails and termites, respectively, present on BCI, and a high proportion of the total abundance (up to 80% of all individuals) represented by these taxa
    corecore