1,672 research outputs found
SA13B-1900 Auroral Charging of the International Space Station
Electrostatic potential variations of the International Space Station (ISS) relative to the space plasma environment are dominated by interaction of the negatively grounded 160 volt US photovoltaic power system with the plasma environment in sunlight and inductive potential variations across the ISS structure generated by motion of the vehicle across the Earth's magnetic field. Auroral charging is also a source of potential variations because the 51.6? orbital inclination of ISS takes the vehicle to sufficiently high magnetic latitudes to encounter precipitating electrons during geomagnetic storms. Analysis of auroral charging for small spacecraft or isolated insulating regions on ISS predict rapid charging to high potentials of hundreds of volts but it has been thought that the large capacitance of the entire ISS structure on the order of 0.01 F will limit frame potentials to less than a volt when exposed to auroral conditions. We present three candidate auroral charging events characterized by transient ISS structure potentials varying from approximately 2 to 17 volts. The events occur primarily at night when the solar arrays are unbiased and cannot therefore be due to solar array current collection. ISS potential decreases to more negative values during the events indicating electron current collection and the events are always observed at the highest latitudes along the ISS trajectory. Comparison of the events with integral >30 keV electron flux measurements from NOAA TIROS spacecraft demonstrate they occur within regions of precipitating electron flux at levels consistent with the energetic electron thresholds reported for onset of auroral charging of the DMSP and Freja satellites. In contrast to the DMSP and Freja events, one of the ISS charging events occur in sunlight
Data Analysis of the Floating Potential Measurement Unit aboard the International Space Station
We present data from the Floating Potential Measurement Unit (FPMU), that is deployed on the starboard (S1) truss of the International Space Station. The FPMU is a suite of instruments capable of redundant measurements of various plasma parameters. The instrument suite consists of: a Floating Potential Probe, a Wide-sweeping spherical Langmuir probe, a Narrow-sweeping cylindrical Langmuir Probe, and a Plasma Impedance Probe. This paper gives a brief overview of the instrumentation and the received data quality, and then presents the algorithm used to reduce I-V curves to plasma parameters. Several hours of data is presented from August 5th, 2006 and March 3rd, 2007. The FPMU derived plasma density and temperatures are compared with the International Reference Ionosphere (IRI) and USU-Global Assimilation of Ionospheric Measurement (USU-GAIM) models. Our results show that the derived in-situ density matches the USU-GAIM model better than the IRI, and the derived in-situ temperatures are comparable to the average temperatures given by the IRI
A Theory for Rapid Charging Events on the International Space Station
The Floating Potential Measurement Unit (FPMU) has detected high negative amplitude rapid charging events (RCEs) on the International Space Station (ISS) at the morning terminator. These events are larger and more rapid than the ISS morning charging events first seen by the Floating Potential Probe (FPP) on ISS in 2001. In this paper, we describe a theory for the RCEs that further elucidates the nature of spacecraft charging in low Earth orbit (LEO) in a non-equilibrium situation. The model accounts for all essential aspects of the newly discovered phenomenon, and is amenable to testing on-orbit. Predictions of the model for the amplitude of the ISS RCEs for the full set of ISS solar arrays and for the coming solar cycle are given, and the results of modeling by the Environments WorkBench (EWB) are compared to the observed events to show that the phenomenon can be explained by solar array driven charging. The situation is unique because the coverglasses have not yet reached equilibrium with the surrounding plasma during the RCEs. Finally, a prescription for further use of the ISS for investigating fundamental plasma physics in LEO is given. Already, plasma and charging monitoring instruments on ISS have taught us much about spacecraft interactions with the dense LEO plasma, and we expect they will continue to yield more valuable science when the Japanese Experiment Module (JEM) is in place
Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center
To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells
High Current ESD Test of Advanced Triple Junction Solar Array Coupon
Testing was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by Space Systems/Loral, LLC (SSL). The ATJ coupon was a small, 4-cell, two-string configuration that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The coupon has many attributes of the flight design; e.g., substrate structure with graphite face sheets, integrated by-pass diodes, cell interconnects, RTV grout, wire routing, etc. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge (ESD) testing at two string voltages (100 V, 150 V) and four array currents (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micro-seconds to 2.75 milli-seconds. All TSAs occurred at a string voltage of 150 V. Post-test Large Area Pulsed Solar Simulator (LAPSS), Dark I-V, and By-Pass Diode tests showed that no degradation occurred due to the TSA events. In addition, the post-test insulation resistance measured was > 50 G-ohms between cells and substrate. These test results indicate a robust design for application to a high-current, high-power mission
High Current ESD Test of Advanced Triple Junction Solar Array Coupon
Testing was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by Space Systems Loral, LLC (SSL). The ATJ coupon was a small, 4-cell, two-string configuration of flight-type design that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge (ESD) testing at two string voltages (100 V, 150 V) and four string currents (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micro-seconds to 2.75 milli-seconds. All TSAs occurred at a string voltage of 150 V. Post-ESD functional testing showed that no degradation occurred due to the TSA events. These test results point to a robust design for application to a high-current, high-power mission
Electrostatic Solar Sail: A Propellantless Propulsion Concept for an Interstellar Probe Mission
The propulsion of an electrostatic solar sail (E Sail) is obtained by extracting momentum from the solar wind through electrostatic repulsion of the positively charged solar wind ions (see Figure 1). The positively charged solar wind protons are deflected by the electric field created around the tethers.This electric field grows in diameter as the spacecraft moves away from the Sun, therefore the E Sail effective area grows. The growth of the E-Sail effective area allows the propulsive force to decrease as 1/r up to distances of 20 AU as it moves away from the Sun, unlike solar sail propulsion whose thrust decreases as 1/r 2 but only to distances of 5AU. This propulsive force is created without using propellant and, therefore, E-sail avoids both the mass and complexity of chemical rockets (that require large amounts of propellant, propellant storage tanks, plumbing, valves, and insulation)
By-Pass Diode Temperature Tests of a Solar Array Coupon Under Space Thermal Environment Conditions
Tests were performed on a 56-cell Advanced Triple Junction solar array coupon whose purpose was to determine margin available for bypass diodes integrated with new, large multi-junction solar cells that are manufactured from a 4-inch wafer. The tests were performed under high vacuum with cold and ambient coupon back-side. The bypass diodes were subjected to a sequence of increasing discrete current steps from 0 Amp to 2.0 Amp in steps of 0.25 Amp. At each current step, a temperature measurement was obtained via remote viewing by an infrared camera. This paper discusses the experimental methodology, including the calibration of the thermal imaging system, and the results
Survey of International Space Station Charging Events
With the negative grounding of the 160V Photovoltaic (PV) arrays, the International Space Station (ISS) can experience varied and interesting charging events. Since August 2006, there has been a multi-probe p ackage, called the Floating Potential Measurement Unit (FPMU), availa ble to provide redundant measurements of the floating potential of th e ISS as well as the density and temperature of the local plasma environment. The FPMU has been operated during intermittent data campaigns since August 2006 and has collected over 160 days of information reg arding the charging of the ISS as it has progressed in configuration from one to three PV arrays and with various additional modules such as the European Space Agency?s Columbus laboratory and the Japan Aeros pace Exploration Agency's Kibo laboratory. This paper summarizes the charging of the ISS and the local environmental conditions that contr ibute to those charging events, both as measured by the FPMU
Spacecraft Charging Test Considerations for Composite Materials
Composite materials present a growing challenge for spacecraft charging assessments. We review some recent lessons learned for charging tests of composite materials using both parallel-plate and electron beam test geometries. We also discuss examples of materials that exhibit significant variations between samples, despite them all having the same trade name
- …