495 research outputs found

    A Malware Analysis and Artifact Capture Tool

    Get PDF
    Malware authors attempt to obfuscate and hide their code in its static and dynamic states. This paper provides a novel approach to aid analysis by intercepting and capturing malware artifacts and providing dynamic control of process flow. Capturing malware artifacts allows an analyst to more quickly and comprehensively understand malware behavior and obfuscation techniques and doing so interactively allows multiple code paths to be explored. The faster that malware can be analyzed the quicker the systems and data compromised by it can be determined and its infection stopped. This research proposes an instantiation of an interactive malware analysis and artifact capture tool

    Competitive swimmers modify racing start depth upon request

    Get PDF
    To expand upon recent findings showing that competitive swimmers complete significantly shallower racing starts in shallower pools, 12 more experienced and 13 less experienced swimmers were filmed underwater during completion of competitive starts. Two starts (1 routine and 1 “requested shallow”) were executed from a 0.76 m block height into water 3.66 m deep. Dependent measures were maximum head depth, head speed at maximum head depth, and distance from the starting wall at maximum head depth. Statistical analyses yielded significant main effects (p < 0.05) for both start type and swimmer experience. Starts executed by the more experienced swimmers were deeper and faster than those executed by the less experienced swimmers. When asked to dive shallowly, maximum head depth decreased (0.19 m) and head speed increased (0.33 ms-1) regardless of experience. The ability of all swimmers to modify start depth implies that spinal cord injuries during competitive swimming starts are not necessarily due to an inherent inability to control the depth of the start

    Block height influences the head depth of competitive racing starts

    Get PDF
    The purpose of this study was to determine whether or not starting block height has an effect on the head depth and head speed of competitive racing starts. Eleven experienced, collegiate swimmers executed competitive racing starts from three different starting heights: 0.21 m (pool deck), 0.46 m (intermediate block), and 0.76 m (standard block). One-way repeated measures ANOVA indicated that starting height had a significant effect on the maximum depth of the center of the head, head speed at maximum head depth, and distance from starting wall at maximum head depth. Racing starts from the standard block and pool deck were significantly deeper, faster, and farther at maximum head depth than starts from the intermediate block. There were no differences between depth, speed, or distance between the standard block and pool deck. We conclude that there is not a positive linear relationship between starting depth and starting height, which means that starts do not necessarily get deeper as the starting height increases

    Water depth influences the head depth of competitive racing starts

    Get PDF
    Recent research suggests that swimmers perform deeper starts in deeper water (Blitvich, McElroy, Blanksby, Clothier, & Pearson, 2000; Cornett, White, Wright, Willmott, & Stager, 2011). To provide additional information relevant to the depth adjustments swimmers make as a function of water depth and the validity of values reported in prior literature, 11 collegiate swimmers were asked to execute racing starts in three water depths (1.53 m, 2.14 m, and 3.66 m). One-way repeated measures ANOVA revealed that the maximum depth of the center of the head was significantly deeper in 3.66 m as compared to the shallower water depths. No differences due to water depth were detected in head speed at maximum head depth or in the distance from the wall at which maximum head depth occurred. We concluded that swimmers can and do make head depth adjustments as a function of water depth. Earlier research performed in deep water may provide overestimates of maximum head depth following the execution of a racing start in water depth typical of competitive venues

    Start depth modification by adolescent competitive swimmers

    Get PDF
    To expand upon previous studies showing inexperienced high school swimmers can complete significantly shallower racing starts when asked to start “shallow,” 42 age group swimmers (6-14 years old) were filmed underwater during completion of competitive starts. Two starts (one normal and one “requested shallow”) were executed from a 0.76 m block into 1.83 m of water. Dependent measures were maximum depth of the center of the head, head speed at maximum head depth, and distance from the starting wall at maximum head depth. Statistical analyses yielded significant main effects (p < 0.05) for start type and age. The oldest swimmers’ starts were deeper and faster than the youngest swimmers’ starts. When asked to start shallowly, maximum head depth decreased (0.10 m) and head speed increased (0.32 ms-1) regardless of age group. The ability of all age groups to modify start depth implies that spinal cord injuries during competitive swimming starts are not necessarily due to age-related deficits in basic motor skills

    Racing start safety: head depth and head speed during competitive starts into a water depth of 1.22 m

    Get PDF
    From the perspective of swimmer safety, there have been no quantitative 3-dimensional studies of the underwater phase of racing starts during competition. To do so, 471 starts were filmed during a meet with a starting depth of 1.22 m and block height of 0.76 m. Starts were stratified according to age (8 & U, 9–10, 11–12, 13–14, and 15 & O) and stroke during the first lap (freestyle, breaststroke, and butterfly). Dependent measures were maximum head depth, head speed at maximum head depth, and distance from the wall at maximum head depth. For all three variables, there were significant main effects for age, F(4, 456) = 12.53, p < .001, F(4, 456) = 27.46, p < .001, and F(4, 456) = 54.71, p < .001, respectively, and stroke, F(2, 456) = 16.91, p < .001, F(2, 456) = 8.45, p < .001, and F(2, 456) = 18.15, p < .001, respectively. The older swimmers performed starts that were deeper and faster than the younger swimmers and as a result, the older swimmers may be at a greater risk for injury when performing starts in this pool depth

    Racing start safety: head depth and head speed during competitive backstroke starts

    Get PDF
    Research on competitive swim start safety has focused on starts involving a dive from above the water surface. The purpose of this study was to determine the depths, speeds, and distances attained when executing backstroke starts, which begin in the water, and to investigate whether or not these variables are a function of age. Backstroke starts (n = 122) performed in 1.22 m of water during competition were stratified according to age group (8&U, 9-10, 11-12, 13-14, and 15&O). Dependent measures were maximum depth of the center of the head (MHD), head speed at maximum head depth (SPD), and distance from the wall at maximum head depth (DIST). Main effects were shown for age group for MHD (F = 8.86, p < 0.05), SPD (F = 4.64, p < 0.05), and DIST (F = 17.21, p < 0.05). Because they performed starts that were deeper and faster than the younger swimmers, the older swimmers seem to be at a greater risk for injury when performing backstroke starts in shallow water

    Racing start safety: head depth and head speed during competitive swim starts into a water depth of 2.29m

    Get PDF
    The head depths and head speeds of swimmers attained following the execution of racing starts during competition have not been well described. To address this, 211 competitive starts were filmed into a starting depth of 2.29 m with a block height of 0.76 m. Starts were stratified according to age, sex, stroke, and swim meet. Dependent measures were maximum depth of the center of the head, head speed at maximum head depth, and distance from the wall at maximum head depth. Significant main effects existed for age for all three measures: F(1, 106) = 13.33, p < .001, F(1, 106) = 18.60, p < .001 and F(1, 106) = 70.59, p < .001, respectively. There was a significant age by sex interaction, F(1, 106) = 5.36, p = 0.023, for head speed. In conclusion, older swimmers performed starts that were deeper and faster than younger swimmers and nearly all starts exceeded the threshold speeds for injury. As compared to starts previously reported into 1.22 m, starts were deeper, slower, and farther from the starting wall at maximum head depth

    On the Origin of Hyper-Velocity Stars Near Sagittarius A*

    Get PDF
    We present our investigation into the origins of high- and hyper-velocity stars around the Milky Way by exploring Gaia data. We begin by establishing a working set of criteria for a star to even be considered as a potential hyper-velocity star, which we defined chronologically as: if the uncertainty in parallax is acceptably low; if the star has above average total velocity for its home set; and finally if the star has a velocity that is mostly radial we investigate it further. We also discuss the complications encountered trying to identify candidate stars. Finally, we perform a time-reversing procedure to trace our final set of stars back to where they may have originated. We found a large number of candidate stars in our initial broad range search, but by enforcing stricter constraints we found a final sample of 1,158 potential hyper-velocity stars. This set displayed zero stars passing close enough to Sagittarius A* to have been thrown out or boosted to their current velocities. However, by selecting hyper-velocity stars with little proper motion in right ascension and declination, we discovered five stars which may have passed close enough to Sagittarius A* to have had their orbits significantly altered. A detailed analysis of the trajectories of those stars was performed, resulting in one star that may have originated from a binary system that had a close encounter with Sagittarius A*. We propose a potential binary partner in some of the known stars orbiting Sagittarius A* with similar periapsis

    Understanding the temporal dynamics of a lowland river fish community at a hazardous intake and floodgate to inform safe operation

    Get PDF
    Entrainment and mortality of freshwater fish at hazardous pumping station intakes used for Flood Risk Management (FRM) are of global concern. Although upstream and downstream passage of diadromous fish has received considerable attention, the ecological behaviours of river-resident fish at these structures and how to protect these species from entrainment is poorly-understood. At a lowland flood-relief pumping station and floodgate situated off-channel (River Foss) to the main-river Yorkshire Ouse (York, England), multi-beam sonar (Dual-Frequency Identification Sonar: DIDSON) was used over a pluriannual (three years) period to investigate diel movements of river-resident fish in response to the variations in temperature, hydrology and pump and floodgate operation, and to determine fish-friendly management options. Diel lateral movements of thousands of river-resident fish between the main-river, floodgate operated channel (River Foss) and off-channel pump forebay were predominantly during the crepuscular period and daytime, proposing important considerations for when managers should operate pumps and associated flood infrastructure. Seasonal diel movements increased throughout winter during a baseline year (no pump operation) and overwintering behaviour was influenced by cooling river temperatures. A Generalized Linear Mixed Model (GLMM) revealed fish entered the off-channel forebay when river levels were stable and not when they were rising or falling, suggesting hydrological stability was important for the ecological function of this fish community. Two years of impact data (pumps operated) then revealed pump operations severely disrupted the ecological functions of local fish populations, which was also uniquely quantified over two independent 24h periods during which temporal fish counts were reduced by 85%. A trial period where the floodgate was lowered ahead of dawn significantly reduced fish immigration into the hazardous forebay when compared to two different hydrological periods. Modifying when the floodgate and pumps operate, including lowering the floodgate ahead of fish immigration at dawn, and starting pumps during the night (but not day), are therefore promising non-engineered management options to prevent immigration of fish into the hazardous off-channel pump forebay and to reduce entrainment and mortality risk during pump operation
    corecore