42,910 research outputs found

    Antibunching in an optomechanical oscillator

    Full text link
    We theoretically analyze antibunching of the phonon field in an optomechanical oscillator employ- ing the membrane-in-the-middle geometry. More specifically, a single-mode mechanical oscillator is quadratically coupled to a single-mode cavity field in the regime in which the cavity dissipation is a dominant source of damping, and adiabatic elimination of the cavity field leads to an effective cubic nonlinearity for the mechanics. We show analytically in the weak coupling regime that the mechan- ics displays a chaotic phonon field for small optomechanical cooperativity, whereas an antibunched single-phonon field appears for large optomechanical cooperativity. This opens the door to control of the second-order correlation function of a mechanical oscillator in the weak coupling regime

    Reaction of the chick to one atmosphere of oxygen

    Get PDF
    Experiment to determine chicken reaction to 100 percent oxygen at atmospheric pressur

    Embryo development and chick growth in a helium - oxygen atmosphere

    Get PDF
    Embryo development and chick growth in helium- oxygen atmospher

    Symmetry based determination of space-time functions in nonequilibrium growth processes

    Full text link
    We study the space-time correlation and response functions in nonequilibrium growth processes described by linear stochastic Langevin equations. Exploiting exclusively the existence of space and time dependent symmetries of the noiseless part of these equations, we derive expressions for the universal scaling functions of two-time quantities which are found to agree with the exact expressions obtained from the stochastic equations of motion. The usefulness of the space-time functions is illustrated through the investigation of two atomistic growth models, the Family model and the restricted Family model, which are shown to belong to a unique universality class in 1+1 and in 2+1 space dimensions. This corrects earlier studies which claimed that in 2+1 dimensions the two models belong to different universality classes.Comment: 18 pages, three figures included, submitted to Phys. Rev.

    Ab initio determination of an extended Heisenberg Hamiltonian in CuO2 layers

    Full text link
    Accurate ab initio calculations on embedded Cu_4O_{12} square clusters, fragments of the La_2CuO_4 lattice, confirm a value of the nearest neighbor antiferromagnetic coupling (J=124 meV) previously obtained from ab initio calculations on bicentric clusters and in good agreement with experiment. These calculations predict non negligible antiferromagnetic second-neighbor interaction (J'=6.5 meV) and four-spin cyclic exchange (K=14 meV), which may affect the thermodynamic and spectroscopic properties of these materials. The dependence of the magnetic coupling on local lattice distortions has also been investigated. Among them the best candidate to induce a spin-phonon effect seems to be the movement of the Cu atoms, changing the Cu-Cu distance, for which the variation of the nearest neighbor magnetic coupling with the Cu-O distance is {\Delta J}/{\Delta d_{Cu-O}}\sim 1700 cm^{-1} A^{-1}.Comment: 11 pages, 5 figures, submitted to Phys. Rev.

    Shaping an ultracold atomic soliton in a travelling wave laser beam

    Full text link
    An ultracold wave packet of bosonic atoms loaded into a travelling laser wave may form a many-atom soliton.This is disturbed by a homogeneous force field, for example by the inevitable gravitation. The wave packet is accelerated and therefore the laser frequency appears to be chirped in the rest frame of the atoms. We derive the effective nonlinear Schr\"odinger equation. It shows a time dependent nonlinearity coefficient which amounts to a damping or antidamping, respectively. The accelerated packet solution remains a soliton which changes its shape adiabatically. Similarly, an active shaping can be obtained in the force-free case by chirping the laser frequency thus representing a way of coherent control of the soliton form. The experimental consequences are discussed.Comment: 5 pages, Latex, to published in Europhys. Let

    Quantum state transfer between a Bose-Einstein condensate and an optomechanical mirror

    Full text link
    In this paper we describe a scheme for state transfer between a trapped atomic Bose condensate and an optomechanical end-mirror mediated by a cavity field. Coupling between the mirror and the cold gas arises from the fact that the cavity field can produce density oscillations in the gas which in turn acts as an internal Bragg mirror for the field. After adiabatic elimination of the cavity field we find that the hybrid system of the gas and mirror is described by a beam splitter Hamiltonian that allows for state transfer, but only if the quantum nature of the cavity field is retained
    • …
    corecore