3,403 research outputs found

    Field-calibrated model of melt, refreezing, and runoff for polar ice caps : Application to Devon Ice Cap

    Get PDF
    Acknowledgments R.M.M. was supported by the Scottish Alliance for Geoscience, Environment and Society (SAGES). The field data collection contributed to the validation of the European Space Agency Cryosat mission and was supported by the Natural Sciences and Engineering Research Council, Canada, the Meteorological Service of Canada (CRYSYS program), the Polar Continental Shelf Project (an agency of Natural Resources Canada), and by UK Natural Environment Research Council consortium grant NER/O/S/2003/00620. Support for D.O.B. was provided by the Canadian Circumpolar Institute and the Climate Change Geoscience Program, Earth Sciences Sector, Natural Resources Canada (ESS contribution 20130371). Thanks are also due to the Nunavut Research Institute and the communities of Resolute Bay and Grise Fjord for permission to conduct fieldwork on Devon Ice Cap. M.J. Sharp, A. Gardner, F. Cawkwell, R. Bingham, S. Williamson, L. Colgan, J. Davis, B. Danielson, J. Sekerka, L. Gray, and J. Zheng are thanked for logistical support and field assistance during the data collection. We thank Ruzica Dadic, two other anonymous reviewers, and the Editor, Bryn Hubbard, for their helpful comments on an earlier version of this paper and which resulted in significant improvements.Peer reviewedPublisher PD

    Impact of Compliance to Oral Hypoglycemic Agents on Short-Term Disability Costs in an Employer Population

    Full text link
    This study evaluated the relationships between compliance with oral hypoglycemic agents and health care/short-term disability costs in a large manufacturing company. The retrospective analysis used an observational cohort drawn from active employees of Ford Motor Company. The study population consisted of 4978 individuals who were continuously eligible for 3 years (between 2001?2007) and who received a prescription for an oral hypoglycemic agent during that time. Medical, pharmacy, and short-term disability claims data were obtained from the University of Michigan Health Management Research Center data warehouse. Pharmacy claims/refill data were used to calculate the proportion of days covered (PDC); an individual was classified as compliant if his/her PDC was ≥80%. Model covariates included age, sex, work type, and Charlson comorbidity scores. The impact of compliance on disability and health care costs was measured by comparing the costs of the compliant with those of the noncompliant during a 1-year follow-up. Among these employees, compliant patients had lower medical, higher pharmacy, and lower short-term disability costs than did the noncompliant. After adjusting for demographics and comorbidity, noncompliance was associated with statistically higher short-term disability costs (1840vs.1840 vs. 1161, P<0.0001), longer short-term disability duration, and an increase in short-term disability incidence (21.5% of the noncompliant had a claim compared to 16.0% of the compliant, P<0.0001). These results suggest that medication compliance may be important in curtailing the rise of health care/disability costs in the workplace. Employers concerned with the total costs associated with diabetes should not overlook the impact of compliance on short-term disability. (Population Health Management 2014;17:35-41)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140180/1/pop.2013.0009.pd

    Ill-posedness of degenerate dispersive equations

    Full text link
    In this article we provide numerical and analytical evidence that some degenerate dispersive partial differential equations are ill-posed. Specifically we study the K(2,2) equation ut=(u2)xxx+(u2)xu_t = (u^2)_{xxx} + (u^2)_{x} and the "degenerate Airy" equation ut=2uuxxxu_t = 2 u u_{xxx}. For K(2,2) our results are computational in nature: we conduct a series of numerical simulations which demonstrate that data which is very small in H2H^2 can be of unit size at a fixed time which is independent of the data's size. For the degenerate Airy equation, our results are fully rigorous: we prove the existence of a compactly supported self-similar solution which, when combined with certain scaling invariances, implies ill-posedness (also in H2H^2)

    Robust Weak-lensing Mass Calibration of Planck Galaxy Clusters

    Full text link
    In light of the tension in cosmological constraints reported by the Planck team between their SZ-selected cluster counts and Cosmic Microwave Background (CMB) temperature anisotropies, we compare the Planck cluster mass estimates with robust, weak-lensing mass measurements from the Weighing the Giants (WtG) project. For the 22 clusters in common between the Planck cosmology sample and WtG, we find an overall mass ratio of \left = 0.688 \pm 0.072. Extending the sample to clusters not used in the Planck cosmology analysis yields a consistent value of <MPlanck/MWtG>=0.698±0.062\left< M_{Planck}/M_{\rm WtG} \right> = 0.698 \pm 0.062 from 38 clusters in common. Identifying the weak-lensing masses as proxies for the true cluster mass (on average), these ratios are 1.6σ\sim 1.6\sigma lower than the default mass bias of 0.8 assumed in the Planck cluster analysis. Adopting the WtG weak-lensing-based mass calibration would substantially reduce the tension found between the Planck cluster count cosmology results and those from CMB temperature anisotropies, thereby dispensing of the need for "new physics" such as uncomfortably large neutrino masses (in the context of the measured Planck temperature anisotropies and other data). We also find modest evidence (at 95 per cent confidence) for a mass dependence of the calibration ratio and discuss its potential origin in light of systematic uncertainties in the temperature calibration of the X-ray measurements used to calibrate the Planck cluster masses. Our results exemplify the critical role that robust absolute mass calibration plays in cluster cosmology, and the invaluable role of accurate weak-lensing mass measurements in this regard.Comment: 5 pages, 2 figure

    A Resolved Ring of Debris Dust around the Solar Analog HD 107146

    Get PDF
    We present resolved images of the dust continuum emission from the debris disk around the young (80-200 Myr) solar-type star HD 107146 with CARMA at λ = 1.3 mm and the CSO at λ = 350 μ. Both images show that the dust emission extends over an approximately 10" diameter region. The high-resolution (3") CARMA image further reveals that the dust is distributed in a partial ring with significant decrease in a flux inward of 97 AU. Two prominent emission peaks appear within the ring separated by ~140° in the position angle. The morphology of the dust emission is suggestive of dust captured into a mean motion resonance, which would imply the presence of a planet at an orbital radius of ~45-75 AU

    Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation

    Full text link
    Recent advances in quantum information processing with trapped ions have demonstrated the need for new ion trap architectures capable of holding and manipulating chains of many (>10) ions. Here we present the design and detailed characterization of a new linear trap, microfabricated with scalable complementary metal-oxide-semiconductor (CMOS) techniques, that is well-suited to this challenge. Forty-four individually controlled DC electrodes provide the many degrees of freedom required to construct anharmonic potential wells, shuttle ions, merge and split ion chains, precisely tune secular mode frequencies, and adjust the orientation of trap axes. Microfabricated capacitors on DC electrodes suppress radio-frequency pickup and excess micromotion, while a top-level ground layer simplifies modeling of electric fields and protects trap structures underneath. A localized aperture in the substrate provides access to the trapping region from an oven below, permitting deterministic loading of particular isotopic/elemental sequences via species-selective photoionization. The shapes of the aperture and radio-frequency electrodes are optimized to minimize perturbation of the trapping pseudopotential. Laboratory experiments verify simulated potentials and characterize trapping lifetimes, stray electric fields, and ion heating rates, while measurement and cancellation of spatially-varying stray electric fields permits the formation of nearly-equally spaced ion chains.Comment: 17 pages (including references), 7 figure
    corecore