1,246 research outputs found

    Steric Effects on the Structures, Reactivity, and Coordination Chemistry of Tris(2-pyridyl)aluminates.

    Get PDF
    Introducing substituents in the 6-position of the 2-pyridyl rings of tris(pyridyl)aluminate anions, of the type [EtAl(2-py')3 ](-) (py'=a substituted 2-pyridyl group), has a large impact on their metal coordination characteristics. This is seen most remarkably in the desolvation of the THF solvate [EtAl(6-Me-2-py)3 Li⋅THF] to give the monomer [EtAl(6-Me-2-py)3 Li] (1), containing a pyramidal, three-coordinate Li(+) cation. Similar monomeric complexes are observed for [EtAl(6-CF3 -2-py)3 Li] (2) and [EtAl(6-Br-2-py)3 Li] (3), which contain CF3 and Br substituents (R). This steric influence can be exploited in the synthesis of a new class of terminal Al-OH complexes, as is seen in the controlled hydrolysis of 2 and 3 to give [EtAl(OH)(6-R-2-py)2 ](-) anions, as in the dimer [EtAl(OH)(6-Br-2-py)2 Li]2 (5). Attempts to deprotonate the Al-OH group of 5 using Et2 Zn led only to the formation of the zincate complex [LiZn(6-Br-py)3 ]2 (6), while reactions of the 6-Br substituted 3 and the unsubstituted complex [EtAl(2-py)3 Li] with MeOH give [EtAl(OMe)(6-Br-2-py)2 Li]2 (7) and [EtAl(OMe)(2-py)2 Li]2 (8), respectively, having similar dimeric arrangements to 5. The combined studies presented provide key synthetic methods for the functionalization and elaboration of tris(pyridyl)aluminate ligands.We thank the EU for a Marie Curie Intra European Fellowship within the seventh European Community Framework Programme for R.G.-R. and an Advanced Investigator Award for D.S.W.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/chem.20150215

    Novel properties and potential applications of functional ligand-modified polyoxotitanate cages.

    Get PDF
    Functional ligand-modified polyoxotitanate (L-POT) cages of the general type [TixOy(OR)z(L)m] (OR = alkoxide, L = functional ligand) can be regarded as molecular fragments of surface-sensitized solid-state TiO2, and are of value as models for studying the interfacial charge and energy transfer between the bound functional ligands and a bulk semiconductor surface. These L-POTs have also had a marked impact in many other research fields, such as single-source precursors for TiO2 deposition, inorganic-organic hybrid material construction, photocatalysis, photoluminescence, asymmetric catalysis and gas adsorption. Their atomically well-defined structures provide the basis for the understanding of structure/property relationships and ultimately for the rational design of new cages targeting specific uses. This highlight focuses on recent advances in L-POTs research, with emphasis on their novel properties and potential applications.EPSRCThis is the final version of the article. It first appeared from Royal Society of Chemistry via https://doi.org/10.1039/C6CC03788G

    The influence of halides in polyoxotitanate cages; dipole moment, splitting and expansion of d-orbitals and electron-electron repulsion

    Get PDF
    Metal-doped polyoxotitanate (M-POT) cages have been shown to be efficient single-source precursors to metal-doped titania [TiO2_2(M)] (state-of-the-art photocatalytic materials) as well as molecular models for the behaviour of dopant metal ions in bulk titania. Here we report the influence halide ions have on the optical and electronic properties of a series of halide-only, and cobalt halide-‘doped’ POT cages. In this combined experimental and computational study we show that halide ions can have several effects on the band gaps of halide-containing POT cages, influencing the dipole moment (hole–electron separation) and the structure of the valance band edge. Overall, the band gap behaviour stems from the effects of increasing orbital energy moving from F to I down Group 17, as well as crystal-field splitting of the d-orbitals, the potential effects of the Nephelauxetic influence of the halides and electron–electron repulsion.We thank the EPSRC (Doctoral Prize for P. D. M.), A*STAR Singapore (Scholarship for N. L.), the Studienstiftung des deutschen Volkes, Fonds of the Chemical Industry (S. H.) for funding. The authors would like to acknowledge the use of the EPSRC UK National Service for Computational Chemistry Software (NSCCS) at Imperial College London and contributions from its staff in carrying out this work

    The use of mixed-metal single source precursors for the synthesis of complex metal oxides

    Get PDF
    Complex metal oxides, defined as metal oxide materials with multiple metals, phases or including dopants, are used in a huge variety of modern applications ranging from photocatalysis, transparent conductive materials, supercapacitors and battery components. In this feature article, the use of mixed-metal single source precursors to synthesise complex metal oxides is explored. The structures and decomposition/reaction pathways of various precursors including mixed-metal alkoxides, complexes with chelating ligands, clusters, polyoxometallates, and metal-organic frameworks are discussed. The advantages and opportunities of using a single source precursor strategy are investigated and highlighted

    An experimental and theoretical study of the coordination and donor properties of tris-2-pyridyl-phosphine ligands

    Get PDF
    ProducciĂłn CientĂ­ficaThe coordination characteristics and donor/acceptor properties of a series of 2-pyridyl substituted phosphine ligands have been investigated using structural, spectroscopic and DFT calculational studies. A range of different coordination modes are observed in Mo and W carbonyl complexes of tris-2-pyridyl-phosphine ligands of the type P(2-py’) (2-py’ = substituted or unsubstituted 2-pyridyl group), including an unprecedented example exhibiting N,Nâ€Č,ÎŒ2-π coordination. DFT calculations were used to assess the relative donor/acceptor properties of a range of related 2-pyridyl-phosphine ligands with respect to PPh3 and PtBu3.Ministerio de Ciencia, InnovaciĂłn y Universidades (PGC2018-096880-A-I00. AEI / FEDER, UE
    • 

    corecore