28 research outputs found
Human CSF movement influenced by vascular low frequency oscillations and respiration
Cerebrospinal fluid (CSF) movement through the pathways within the central nervous system is of high significance for maintaining normal brain health and function. Low frequency hemodynamics and respiration have been shown to drive CSF in humans independently. Here, we hypothesize that CSF movement may be driven simultaneously (and in synchrony) by both mechanisms and study their independent and coupled effects on CSF movement using novel neck fMRI scans. Caudad CSF movement at the fourth ventricle and hemodynamics of the major neck blood vessels (internal carotid arteries and internal jugular veins) was measured from 11 young, healthy volunteers using novel neck fMRI scans with simultaneous measurement of respiration. Two distinct models of CSF movement (1. Low-frequency hemodynamics and 2. Respiration) and possible coupling between them were investigated. We show that the dynamics of brain fluids can be assessed from the neck by studying the interrelationships between major neck blood vessels and the CSF movement in the fourth ventricle. We also demonstrate that there exists a cross-frequency coupling between these two separable mechanisms. The human CSF system can respond to multiple coupled physiological forces at the same time. This information may help inform the pathological mechanisms behind CSF movement-related disorders
Males miss and females forgo: auditory masking from vessel noise impairs foraging efficiency and success in killer whales
Understanding how the environment mediates an organism's ability to meet basic survival requirements is a fundamental goal of ecology. Vessel noise is a global threat to marine ecosystems and is increasing in intensity and spatiotemporal extent due to growth in shipping coupled with physical changes to ocean soundscapes from ocean warming and acidification. Odontocetes rely on biosonar to forage, yet determining the consequences of vessel noise on foraging has been limited by the challenges of observing underwater foraging outcomes and measuring noise levels received by individuals. To address these challenges, we leveraged a unique acoustic and movement dataset from 25 animal‐borne biologging tags temporarily attached to individuals from two populations of fish‐eating killer whales (Orcinus orca) in highly transited coastal waters to (1) test for the effects of vessel noise on foraging behaviors—searching (slow‐click echolocation), pursuit (buzzes), and capture and (2) investigate the mechanism of interference. For every 1 dB increase in maximum noise level, there was a 4% increase in the odds of searching for prey by both sexes, a 58% decrease in the odds of pursuit by females and a 12.5% decrease in the odds of prey capture by both sexes. Moreover, all but one deep (≥75 m) foraging attempt with noise ≥110 dB re 1 μPa (15–45 kHz band; n = 6 dives by n = 4 whales) resulted in failed prey capture. These responses are consistent with an auditory masking mechanism. Our findings demonstrate the effects of vessel noise across multiple phases of odontocete foraging, underscoring the importance of managing anthropogenic inputs into soundscapes to achieve conservation objectives for acoustically sensitive species. While the timescales for recovering depleted prey species may span decades, these findings suggest that complementary actions to reduce ocean noise in the short term offer a critical pathway for recovering odontocete foraging opportunities
Divergent foraging strategies between populations of sympatric matrilineal killer whales
In cooperative species, human-induced rapid environmental change may threaten cost–benefit tradeoffs of group behavioral strategies that evolved in past environments. Capacity for behavioral flexibility can increase population viability in novel environments. Whether the partitioning of individual responsibilities within social groups is fixed or flexible across populations is poorly understood, despite its relevance for predicting responses to global change at the population and species levels and designing successful conservation programs. We leveraged bio-logging data from two populations of fish-eating killer whales (Orcinus orca) to quantify patterns of fine-scale foraging movements and their relationships with demography. We reveal striking interpopulation differences in patterns of individual foraging behavior. Females from the endangered Southern Resident (SRKW) population captured less prey and spent less time pursuing prey than SRKW males or Northern Resident (NRKW) females, whereas NRKW females captured more prey than NRKW males. The presence of a calf (≤3 years) reduced the number of prey captured by adult females from both populations, but disproportionately so for SRKW. SRKW adult males with a living mother captured more prey than those whose mother had died, whereas the opposite was true for NRKW adult males. Across populations, males foraged in deeper areas than females, and SRKW captured prey deeper than NRKW. These population-level differences in patterns of individual foraging behavior challenge the existing paradigm that females are the disproportionate foragers in gregarious resident killer whales, and demonstrate considerable variation in the foraging strategies across populations of an apex marine predator experiencing different environmental stressors
Duration of androgen deprivation therapy with postoperative radiotherapy for prostate cancer: a comparison of long-course versus short-course androgen deprivation therapy in the RADICALS-HD randomised trial
Background
Previous evidence supports androgen deprivation therapy (ADT) with primary radiotherapy as initial treatment for intermediate-risk and high-risk localised prostate cancer. However, the use and optimal duration of ADT with postoperative radiotherapy after radical prostatectomy remains uncertain.
Methods
RADICALS-HD was a randomised controlled trial of ADT duration within the RADICALS protocol. Here, we report on the comparison of short-course versus long-course ADT. Key eligibility criteria were indication for radiotherapy after previous radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to add 6 months of ADT (short-course ADT) or 24 months of ADT (long-course ADT) to radiotherapy, using subcutaneous gonadotrophin-releasing hormone analogue (monthly in the short-course ADT group and 3-monthly in the long-course ADT group), daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as metastasis arising from prostate cancer or death from any cause. The comparison had more than 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 75% to 81% (hazard ratio [HR] 0·72). Standard time-to-event analyses were used. Analyses followed intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and
ClinicalTrials.gov
,
NCT00541047
.
Findings
Between Jan 30, 2008, and July 7, 2015, 1523 patients (median age 65 years, IQR 60–69) were randomly assigned to receive short-course ADT (n=761) or long-course ADT (n=762) in addition to postoperative radiotherapy at 138 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 8·9 years (7·0–10·0), 313 metastasis-free survival events were reported overall (174 in the short-course ADT group and 139 in the long-course ADT group; HR 0·773 [95% CI 0·612–0·975]; p=0·029). 10-year metastasis-free survival was 71·9% (95% CI 67·6–75·7) in the short-course ADT group and 78·1% (74·2–81·5) in the long-course ADT group. Toxicity of grade 3 or higher was reported for 105 (14%) of 753 participants in the short-course ADT group and 142 (19%) of 757 participants in the long-course ADT group (p=0·025), with no treatment-related deaths.
Interpretation
Compared with adding 6 months of ADT, adding 24 months of ADT improved metastasis-free survival in people receiving postoperative radiotherapy. For individuals who can accept the additional duration of adverse effects, long-course ADT should be offered with postoperative radiotherapy.
Funding
Cancer Research UK, UK Research and Innovation (formerly Medical Research Council), and Canadian Cancer Society
Adding 6 months of androgen deprivation therapy to postoperative radiotherapy for prostate cancer: a comparison of short-course versus no androgen deprivation therapy in the RADICALS-HD randomised controlled trial
Background
Previous evidence indicates that adjuvant, short-course androgen deprivation therapy (ADT) improves metastasis-free survival when given with primary radiotherapy for intermediate-risk and high-risk localised prostate cancer. However, the value of ADT with postoperative radiotherapy after radical prostatectomy is unclear.
Methods
RADICALS-HD was an international randomised controlled trial to test the efficacy of ADT used in combination with postoperative radiotherapy for prostate cancer. Key eligibility criteria were indication for radiotherapy after radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to radiotherapy alone (no ADT) or radiotherapy with 6 months of ADT (short-course ADT), using monthly subcutaneous gonadotropin-releasing hormone analogue injections, daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as distant metastasis arising from prostate cancer or death from any cause. Standard survival analysis methods were used, accounting for randomisation stratification factors. The trial had 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 80% to 86% (hazard ratio [HR] 0·67). Analyses followed the intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov, NCT00541047.
Findings
Between Nov 22, 2007, and June 29, 2015, 1480 patients (median age 66 years [IQR 61–69]) were randomly assigned to receive no ADT (n=737) or short-course ADT (n=743) in addition to postoperative radiotherapy at 121 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 9·0 years (IQR 7·1–10·1), metastasis-free survival events were reported for 268 participants (142 in the no ADT group and 126 in the short-course ADT group; HR 0·886 [95% CI 0·688–1·140], p=0·35). 10-year metastasis-free survival was 79·2% (95% CI 75·4–82·5) in the no ADT group and 80·4% (76·6–83·6) in the short-course ADT group. Toxicity of grade 3 or higher was reported for 121 (17%) of 737 participants in the no ADT group and 100 (14%) of 743 in the short-course ADT group (p=0·15), with no treatment-related deaths.
Interpretation
Metastatic disease is uncommon following postoperative bed radiotherapy after radical prostatectomy. Adding 6 months of ADT to this radiotherapy did not improve metastasis-free survival compared with no ADT. These findings do not support the use of short-course ADT with postoperative radiotherapy in this patient population
Can the wet - State conductivity of hydrogels be improved by incorporation of spherical conducting nanoparticles?
In nerve and muscle regeneration applications, the incorporation of conducting elements into biocompatible materials has gained interest over the last few years, as it has been shown that electrical stimulation of some regenerating cells has a positive effect on their development. A variety of different materials, ranging from graphene to conducting polymers, have been incorporated into hydrogels and increased conductivities have been reported. However, the majority of conductivity measurements are performed in a dry state, even though material blends are designed for applications in a wet state, in vivo environment. The focus of this work is to use polypyrrole nanoparticles to increase the wet-state conductivity of alginate to produce a conducting, easily processable, cell-supporting composite material. Characterization and purification of the conducting polymer nanoparticle dispersions, as well as electrochemical measurements, have been performed to assess conductivity of the nanoparticles and hydrogel composites in the wet state, in order to determine whether filling an ionically conducting hydrogel with electrically conductive nanoparticles will enhance the conductivity. It was determined that the introduction of spherical nanoparticles into alginate gel does not increase, but rather slightly reduces conductivity of the hydrogel in the wet state
Whales on the marine highway: assessing the risk of ship strikes to humpback (Megaptera novaeangliae) and fin (Balaenoptera physalus) whales off the west coast of Vancouver Island, British Columbia, Canada
Vessel strikes are a source of mortality and injury for baleen whales, particularly near shipping lanes, that can have population-level impacts. Quantifying mortality from this threat is a challenge because carcasses sink. Methods to estimate risk of collision using whale distributions data and marine traffic data in a spatial analysis are useful to identify hotspots of risk. To assess ship strike risk to whales, we conducted 34 systematic aerial surveys (2012-2015) to estimate humpback and fin whale distribution and relative density off the west coast of Vancouver Island, Canada including approaches to Juan de Fuca Strait, a shipping gateway to several major west-coast ports in the Salish Sea. We fit sightings (330 humpback and 120 fin whales) and effort data from our surveys to Generalized Additive Models (GAMs) to predict whale densities over a gridded surface over the study area. Humpbacks were associated with the continental shelf, with highest densities along the shelf edge (~400 m), whereas fin whales largely occurred west of the shelf in deeper water (\u3e400 m). We mapped shipping intensity data from 2013 on the same gridded surface, and compared shipping intensity to model-predicted whale densities to estimate relative risk of vessel strikes throughout the study area. Since vessel speed is an important determinant of collision lethality, we also calculated the relative risk of lethal injuries as a result of ship speed per grid cell. Results serve to focus further research in this region and lead to opportunities to discuss conservation and management options to reduce this threat and thereby support recovery of endangered whale species
Fine-scale foraging movements by fish-eating killer whales (Orcinus orca) relate to the vertical distributions and escape responses of salmonid prey (Oncorhynchus spp.)
Background:
We sought to quantitatively describe the fine-scale foraging behavior of northern resident killer whales (Orcinus orca), a population of fish-eating killer whales that feeds almost exclusively on Pacific salmon (Oncorhynchus spp.). To reconstruct the underwater movements of these specialist predators, we deployed 34 biologging Dtags on 32 individuals and collected high-resolution, three-dimensional accelerometry and acoustic data. We used the resulting dive paths to compare killer whale foraging behavior to the distributions of different salmonid prey species. Understanding the foraging movements of these threatened predators is important from a conservation standpoint, since prey availability has been identified as a limiting factor in their population dynamics and recovery.
Results
Three-dimensional dive tracks indicated that foraging (N = 701) and non-foraging dives (N = 10,618) were kinematically distinct (Wilks’ lambda: λ
16 = 0.321, P < 0.001). While foraging, killer whales dove deeper, remained submerged longer, swam faster, increased their dive path tortuosity, and rolled their bodies to a greater extent than during other activities. Maximum foraging dive depths reflected the deeper vertical distribution of Chinook (compared to other salmonids) and the tendency of Pacific salmon to evade predators by diving steeply. Kinematic characteristics of prey pursuit by resident killer whales also revealed several other escape strategies employed by salmon attempting to avoid predation, including increased swimming speeds and evasive maneuvering.
Conclusions
High-resolution dive tracks reconstructed using data collected by multi-sensor accelerometer tags found that movements by resident killer whales relate significantly to the vertical distributions and escape responses of their primary prey, Pacific salmon.Science, Faculty ofNon UBCOceans and Fisheries, Institute for theZoology, Department ofReviewedFacult