63,526 research outputs found

    A summary of AFCRL passive-sphere development efforts and experience

    Get PDF
    Falling spheres for meteorological rocket soundin

    A High-Order Kernel Method for Diffusion and Reaction-Diffusion Equations on Surfaces

    Get PDF
    In this paper we present a high-order kernel method for numerically solving diffusion and reaction-diffusion partial differential equations (PDEs) on smooth, closed surfaces embedded in Rd\mathbb{R}^d. For two-dimensional surfaces embedded in R3\mathbb{R}^3, these types of problems have received growing interest in biology, chemistry, and computer graphics to model such things as diffusion of chemicals on biological cells or membranes, pattern formations in biology, nonlinear chemical oscillators in excitable media, and texture mappings. Our kernel method is based on radial basis functions (RBFs) and uses a semi-discrete approach (or the method-of-lines) in which the surface derivative operators that appear in the PDEs are approximated using collocation. The method only requires nodes at "scattered" locations on the surface and the corresponding normal vectors to the surface. Additionally, it does not rely on any surface-based metrics and avoids any intrinsic coordinate systems, and thus does not suffer from any coordinate distortions or singularities. We provide error estimates for the kernel-based approximate surface derivative operators and numerically study the accuracy and stability of the method. Applications to different non-linear systems of PDEs that arise in biology and chemistry are also presented

    3D Photoionisation Modelling of NGC 6302

    Full text link
    We present a three-dimensional photoionisation and dust radiative transfer model of NGC 6302, an extreme, high-excitation planetary nebula. We use the 3D photoionisation code Mocassin} to model the emission from the gas and dust. We have produced a good fit to the optical emission-line spectrum, from which we derived a density distribution for the nebula. A fit to the infrared coronal lines places strong constraints on the properties of the unseen ionising source. We find the best fit comes from using a 220,000 K hydrogen-deficient central star model atmosphere, indicating that the central star of this PN may have undergone a late thermal pulse. We have also fitted the overall shape of the ISO spectrum of NGC 6302 using a dust model with a shallow power-law size distribution and grains up to 1.0 micron in size. To obtain a good fit to the infrared SED the dust must be sufficiently recessed within the circumstellar disk to prevent large amounts of hot dust at short wavelengths, a region where the ISO spectrum is particularly lacking. These and other discoveries are helping to unveil many properties of this extreme object and trace it's evolutionary history.Comment: 8 pages, 4 figures; for the proceedings of "Asymmetric Planetary Nebuale IV," R. L. M. Corradi, A. Manchado, N. Soker ed

    A High-Order Radial Basis Function (RBF) Leray Projection Method for the Solution of the Incompressible Unsteady Stokes Equations

    Get PDF
    A new projection method based on radial basis functions (RBFs) is presented for discretizing the incompressible unsteady Stokes equations in irregular geometries. The novelty of the method comes from the application of a new technique for computing the Leray-Helmholtz projection of a vector field using generalized interpolation with divergence-free and curl-free RBFs. Unlike traditional projection methods, this new method enables matching both tangential and normal components of divergence-free vector fields on the domain boundary. This allows incompressibility of the velocity field to be enforced without any time-splitting or pressure boundary conditions. Spatial derivatives are approximated using collocation with global RBFs so that the method only requires samples of the field at (possibly scattered) nodes over the domain. Numerical results are presented demonstrating high-order convergence in both space (between 5th and 6th order) and time (up to 4th order) for some model problems in two dimensional irregular geometries.Comment: 34 pages, 8 figure
    corecore