4,891 research outputs found

    New and Revised Llandovery (Early Silurian) Rugose Corals from Central Western New South Wales

    Get PDF
    Revision of some of the early Silurian rugose coral faunas from central western New South Wales and study of additional new collections warrants the introduction of a number of new taxa and some previous generic assignments need to be updated. The new cystiphyllinid genus Gephyrelasma  McLean is proposed, comprising type species  Dentilasma ramosum  McLean and  G. stevensi  McLean sp. nov. The new kodonophyllid genus  Vitiliphyllum   McLean, with type species  V. jenkinsi   McLean sp. nov., and the new arachnophyllid genus  Latomiphyllum  McLean, with type species  Arachnophyllum  ?  epistomoides  Etheridge, are introduced. Additional new species include the tryplasmatids  Aphyllum ulahense  McLean and  A. picketti  McLean, as well as the ptychophyllinid  Ptychophyllum sutorense  McLean.  Grewingkia neumani   McLean is now regarded as a probable representative of the kodonophyllid  Cyatholasma  Ivanovskiy, while  Dentilasma honorabile  Ivanovskiy sensu McLean is now only tentatively assigned to that species. Since the original studies of the coral faunas, there has been considerable revision of the lithostratigraphy and biostratigraphy of the relevant sequences. The most current interpretations are reviewed and summarized here

    Phylum arthropoda, subphylum trilobitomorpha: trilobites

    Get PDF
    This volume is the second of three that provide a complete review and inventory of New Zealand\u27s entire living and fossil biodiversity - an international effort involving more than 220 New Zealand and overseas specialists and the most comprehensive of its kind in the world. Together, the three volumes will list every one of the almost 55,000 known species of New Zealand\u27s animals, plants, fungi and micro-organisms. Volume 2 mostly deals with the major branch of the animal kingdom known as Ecdysozoa (moulting animals), which includes arachnids, centipedes and millipedes, crustaceans and insects. It also includes the enigmatic phylum Chaetognatha (arrow worms) and concludes with a chapter on the fossil traces - ichnofossils - of ancient animal activities. All three volumes are affiliated with Species 2000, an international scientific project with the long-term goal of enumerating all known species on Earth into one seamless list - the Catalogue of Life, a kind of online biological telephone directory.To date, only New Zealand has compiled a checklist of its entire biota. Approximately 52% of this country\u27s species are endemic - found only in New Zealand\u27s freshwater, marine, and land environments. We have a responsibility to the global community to preserve this unique heritage or taonga. But further than that, all of our species - including many of the naturalised aliens included in the survey - are important to New Zealand\u27s economy, ecology and well-being. Written for the advanced high-school and tertiary-level reader, these volumes are intended to be a kind of \u27Cooks Tour\u27 of the kingdoms and phyla of life that will, it is hoped, provide an appreciation of the wondrous diversity of nature

    Domain is a Moving Target for Relational Learning

    Get PDF
    The domain for relational learning was manipulated by varying the training set size for pigeons that had learned the same/different (S/D) concept. Six pigeons that had learned a S/D task with pairs of pictures with a set size of 1,024 picture items had their training set size reduced to 8 items. Training on the reduced 8-item set was followed by transfer testing that was repeated four times. Transfer performance following reduction of the training set to 8 items was less than it had been when the pigeons were trained with the 1,024-item set, but 25.8% above chance. This partial abstract-concept learning remained constant over the four tests with novel stimuli. The results show that a broad domain established by a large expanding training set can once again become restricted by further training with a small training set

    The acute and repeated bout effects of multi-joint eccentric exercise on physical function and balance in older adults

    Get PDF
    PurposeEccentric muscle actions generate high levels of force at a low metabolic cost, making them a suitable training modality to combat age-related neuromuscular decline. The temporary muscle soreness associated with high intensity eccentric contractions may explain their limited use in clinical exercise prescription, however any discomfort is often alleviated after the initial bout (repeated bout effect). Therefore, the aims of the present study were to examine the acute and repeated bout effects of eccentric contractions on neuromuscular factors associated with the risk of falling in older adults.MethodsBalance, functional ability [timed up-and-go and sit-to-stand], and lower-limb maximal and explosive strength were measured in 13 participants (67.6 ± 4.9 year) pre- and post-eccentric exercise (0, 24, 48, and 72 hr) in Bout 1 and 14 days later in Bout 2. The eccentric exercise intervention was performed on an isokinetic unilateral stepper ergometer at 50% of maximal eccentric strength at 18 step‧min−1 per limb for 7 min (126 steps per limb). Two-way repeated measures ANOVAs were conducted to identify any significant effects (P ≤ 0.05).ResultsEccentric strength significantly decreased (− 13%) in Bout 1 at 24 hr post-exercise; no significant reduction was observed at any other time-point after Bout 1. No significant reductions occurred in static balance or functional ability at any time-point in either bout.ConclusionSubmaximal multi-joint eccentric exercise results in minimal disruption to neuromuscular function associated with falls in older adults after the initial bout

    Student conceptions about energy transformations: progression from general chemistry to biochemistry

    Get PDF
    Students commencing studies in biochemistry must transfer and build on concepts they learned in chemistry and biology classes. It is well established, however, that students have difficulties in transferring critical concepts from general chemistry courses; one key concept is “energy.” Most previous work on students’ conception of energy has focused on their understanding of energy in the context of physics (including the idea of “work”) and/or their understanding of energy in classical physical and inorganic chemistry contexts (particularly Gibbs Free Energy changes, the second law of thermodynamics, and equilibrium under standard conditions within a closed system). For biochemistry, students must go beyond those basic thermodynamics concepts of work, standard energy changes, and closed systems, and instead they must consider what energy flow, use, and transformation mean in living, open, and dynamic systems. In this study we explored students’ concepts about free energy and flow in biological chemical reactions and metabolic pathways by surveys and in-depth interviews. We worked with students in general chemistry classes and biochemistry courses in both an Australian and a US tertiary institution. We address three primary questions (i) What are the most common alternative conceptions held by students when they explain energy-related phenomena in biochemistry?, (ii) What information do students transfer from introductory chemistry and biology when they are asked to consider energy in a biological reaction or reaction pathway?, and (iii) How do students at varying levels of competence articulate their understandings of energy in pathways and biological reactions? The answers to these questions are used to build a preliminary learning progression for understanding “energy” in biochemistry. We also propose crucial elements of content knowledge that instructors could apply to help students better grasp this threshold concept in biochemistry

    Simultaneous Observations of Comet C/2002 T7 (LINEAR) with the Berkeley-Illinois-Maryland Association and Owens Valley Radio Observatory Interferometers: HCN and CH_3OH

    Get PDF
    We present observations of HCN J = 1-0 and CH_3OH J(K_a, K_c) = 3(1, 3)-4(0, 4) A+ emission from comet C/2002 T7 (LINEAR) obtained simultaneously with the Owens Valley Radio Observatory (OVRO) and Berkeley-Illinois-Maryland Association (BIMA) millimeter interferometers. We combined the data from both arrays to increase the (u, v) sampling and signal to noise of the detected line emission. We also report the detection of CH_3OH J(K_a, K_c) = 8(0, 8)-7(1, 7) A^+ with OVRO data alone. Using a molecular excitation code that includes the effects of collisions with water and electrons, as well as pumping by the Solar infrared photons (for HCN alone), we find a production rate of HCN of 2.9 × 10^(26) s^(–1) and for CH_3OH of 2.2 × 10^(27) s^(–1). Compared to the adopted water production rate of 3 × 10^(29) s^(–1), this corresponds to an HCN/H_2O ratio of 0.1% and a CH_3OH/H_2O ratio of 0.7%. We critically assess the uncertainty of these values due to the noise (~10%), the uncertainties in the adopted comet model (~50%), and the uncertainties in the adopted collisional excitation rates (up to a factor of 2). Pumping by Solar infrared photons is found to be a minor effect for HCN, because our 15" synthesized beam is dominated by the region in the coma where collisions dominate. Since the uncertainties in the derived production rates are at least as large as one-third of the differences found between comets, we conclude that reliable collision rates and an accurate comet model are essential. Because the collisionally dominated region critically depends on the water production rate, using the same approximate method for different comets may introduce biases in the derived production rates. Multiline observations that directly constrain the molecular excitation provide much more reliable production rates

    A giant new trimerellide brachiopod from the Wenlock (Early Silurian) of New South Wales, Australia

    Get PDF
    Keteiodoros bellense n.gen. and n.sp. is a remarkably large trimerellide brachiopod from the Wenlock Dripstone Formation, southeast of Wellington, central New South Wales. The probable articulatory mechanism is unusual for trimerellides. It apparently involved both flattened sections of the lateral commissures which acted as pivots for opening and closing the shell, and a large and strongly modified articulating plate (which partly envelopes a robust dorsal umbo) articulating with the pseudointerarea at the posterior end of the ventral platform. The heavy dorsal umbo probably acted as a counterbalance to the anterior part of the valve; the diductor muscles were apparently attached to the umbo at the sides of the articulating plate, and to the anterior end of the ventral platform. The trimerellides occur in presumed life position in nearly mono specific beds which are interpreted as having formed in a quiet inshore shallow subtidal area on a sloping shelf, protected by coral biostromes but periodically disrupted by storm action. They are considered to represent a low-diversity quietwater Benthic Assemblage 2 community
    corecore