239 research outputs found

    Bias in the prediction of genetic gain due to mass and half-sib selection in random mating populations

    Get PDF
    The prediction of gains from selection allows the comparison of breeding methods and selection strategies, although these estimates may be biased. The objective of this study was to investigate the extent of such bias in predicting genetic gain. For this, we simulated 10 cycles of a hypothetical breeding program that involved seven traits, three population classes, three experimental conditions and two breeding methods (mass and half-sib selection). Each combination of trait, population, heritability, method and cycle was repeated 10 times. The predicted gains were biased, even when the genetic parameters were estimated without error. Gain from selection in both genders is twice the gain from selection in a single gender only in the absence of dominance. The use of genotypic variance or broad sense heritability in the predictions represented an additional source of bias. Predictions based on additive variance and narrow sense heritability were equivalent, as were predictions based on genotypic variance and broad sense heritability. The predictions based on mass and family selection were suitable for comparing selection strategies, whereas those based on selection within progenies showed the largest bias and lower association with the realized gain

    Biometric analysis of protein and oil contents of soybean genotypes in different environments

    Get PDF
    The objective of this work was to identify by biometric analyses the most stable soybean parents, with higher oil or protein contents, cultivated at different seasons and locations of the state of Minas Gerais, Brazil. Forty-nine genotypes were evaluated in the municipalities of Viçosa, Visconde do Rio Branco, and São Gotardo, in the state of Minas Gerais, from 2009 to 2011. Protein and oil contents were analyzed by infrared spectrometry using a FT-NIR analyzer. The effects of genotype, environment, and genotype x environment interaction were significant. The BARC-8 soybean genotype is the best parent to increase protein contents in the progenies, followed by BR 8014887 and CS 3032PTA276-3-4. Selection for high oil content is more efficient when the crossings involve the Suprema, CD 01RR8384, and A7002 genotypes, which show high mean phenotypic values, wide adaptability, and greater stability to environmental variation
    corecore