38 research outputs found

    Oligomeric interfaces as a tool in drug discovery:Specific interference with activity of malate dehydrogenase of Plasmodium falciparum in vitro

    Get PDF
    Malaria remains a major threat to human health, as strains resistant to current therapeutics are discovered. Efforts in finding new drug targets are hampered by the lack of sufficiently specific tools to provide target validation prior to initiating expensive drug discovery projects. Thus, new approaches that can rapidly enable drug target validation are of significant interest. In this manuscript we present the crystal structure of malate dehydrogenase from Plasmodium falciparum (PfMDH) at 2.4 Ã… resolution and structure-based mutagenic experiments interfering with the inter-oligomeric interactions of the enzyme. We report decreased thermal stability, significantly decreased specific activity and kinetic parameters of PfMDH mutants upon mutagenic disruption of either oligomeric interface. In contrast, stabilization of one of the interfaces resulted in increased thermal stability, increased substrate/cofactor affinity and hyperactivity of the enzyme towards malate production at sub-millimolar substrate concentrations. Furthermore, the presented data show that our designed PfMDH mutant could be used as specific inhibitor of the wild type PfMDH activity, as mutated PfMDH copies were shown to be able to self-incorporate into the native assembly upon introduction in vitro, yielding deactivated mutant:wild-type species. These data provide an insight into the role of oligomeric assembly in regulation of PfMDH activity and reveal that recombinant mutants could be used as probe tool for specific modification of the wild type PfMDH activity, thus offering the potential to validate its druggability in vivo without recourse to complex genetics or initial tool compounds. Such tool compounds often lack specificity between host or pathogen proteins (or are toxic in in vivo trials) and result in difficulties in assessing cause and effect-particularly in cases when the enzymes of interest possess close homologs within the human host. Furthermore, our oligomeric interference approach could be used in the future in order to assess druggability of other challenging human pathogen drug targets

    Loss of Serpina1 in Mice Leads to Altered Gene Expression in Inflammatory and Metabolic Pathways

    Get PDF
    The SERPINA1 gene encodes alpha1-antitrypsin (AAT), an acute phase glycoprotein and serine protease inhibitor that is mainly (80-90%) produced in the liver. Point mutations in the SERPINA1 gene can lead to the misfolding, intracellular accumulation, and deficiency of circulating AAT protein, increasing the risk of developing chronic liver diseases or chronic obstructive pulmonary disease. Currently, siRNA technology can knock down the SERPINA1 gene and limit defective AAT production. How this latter affects other liver genes is unknown. Livers were taken from age- and sex-matched C57BL/6 wild-type (WT) and Serpina1 knockout mice (KO) aged from 8 to 14 weeks, all lacking the five serpin A1a-e paralogues. Total RNA was isolated and RNA sequencing, and transcriptome analysis was performed. The knockout of the Serpina1 gene in mice changed inflammatory, lipid metabolism, and cholesterol metabolism-related gene expression in the liver. Independent single-cell sequencing data of WT mice verified the involvement of Serpina1 in cholesterol metabolism. Our results from mice livers suggested that designing therapeutic strategies for the knockout of the SERPINA1 gene in humans must account for potential perturbations of key metabolic pathways and consequent mitigation of side effects.RNA sequencing was supported by the grant ISCIII-AESI PI20CIII/00015.S

    Inhibitors of Dipeptidyl Peptidase IV and Aminopeptidase N Target Major Pathogenetic Steps in Acne Initiation

    Get PDF
    Acne is a chronic disease hallmarked by sebaceous hyperplasia, follicular hyperkeratosis, and inflammation. Parallel targeting of these factors is required to treat acne effectively. Inhibitors of dipeptidyl peptidase IV (DP IV) and aminopeptidase N (APN) show strong anti-inflammatory effects on immune cells and therapeutic efficacy in autoimmune disorders. Our investigation focused on the expression and functional relevance of these ectopeptidases in three cell types which exhibit an altered phenotype in early acne lesions. We showed for the first time expression of DP IV and APN on human sebocytes. In the SZ95 sebocyte cell line, the DP IV inhibitors Lys[Z(NO2)]-thiazolidide and Lys[Z(NO2)]-pyrrolidide and the APN inhibitors actinonin and bestatin suppressed proliferation, enhanced terminal differentiation, and slightly decreased total neutral lipid production. The anti-inflammatory and differentiation-restoring cytokine IL-1 receptor antagonist was significantly upregulated in SZ95 sebocytes and the HaCaT keratinocyte cell line in the presence of inhibitors. Furthermore, the inhibitors suppressed proliferation and IL-2 production of Propionibacterium acnes-stimulated T cells ex vivo and enhanced the expression of the immunosuppressive cytokine transforming growth factor-β1. Our data provide first evidence for a functional role of DP IV and APN in the sebaceous gland apparatus and for their inhibitors, used alone or in combination, as completely new substances possibly affecting acne pathogenesis in a therapeutic manner

    Lung Adenocarcinoma Cell Sensitivity to Chemotherapies: A Spotlight on Lipid Droplets and SREBF1 Gene

    Get PDF
    To explore the relationship between cancer cell SREBF1 expression, lipid droplets (LDs) formation, and the sensitivity to chemotherapies, we cultured lung adenocarcinoma cells H1299 (with LD) and H1563 (without LD) in a serum-free basal medium (BM) or neutrophil degranulation products containing medium (NDM), and tested cell responses to cisplatin and etoposide. By using the DESeq2 Bioconductor package, we detected 674 differentially expressed genes (DEGs) associated with NDM/BM differences between two cell lines, many of these genes were associated with the regulation of sterol and cholesterol biosynthesis processes. Specifically, SREBF1 markedly declined in both cell lines cultured in NDM or when treated with chemotherapeutics. Despite the latter, H1563 exhibited LD formation and resistance to etoposide, but not to cisplatin. Although H1299 cells preserved LDs, these cells were similarly sensitive to both drugs. In a cohort of 292 patients with non-small-cell lung cancer, a lower SREBF1 expression in tumors than in adjacent nontumor tissue correlated with overall better survival, specifically in patients with adenocarcinoma at stage I. Our findings imply that a direct correlation between SREBF1 and LD accumulation can be lost due to the changes in cancer cell environment and/or chemotherapy. The role of LDs in lung cancer development and response to therapies remains to be examined in more detail.The study was supported by German Center for Lung Research, grants number 82DZL002B1 (Janciauskiene) and 82DZL00402 (Schneider).S

    Clinical Significance of SERPINA1 Gene and Its Encoded Alpha1-antitrypsin Protein in NSCLC

    Get PDF
    High expression of SERPINA1 gene encoding acute phase protein, alpha1-antitrypsin (AAT), is associated with various tumors. We sought to examine the significance of SERPINA1 and AAT protein in non-small-cell lung cancer (NSCLC) patients and NSCLC cell lines. Tumor and adjacent non-tumor lung tissues and serum samples from 351 NSCLC patients were analyzed for SERPINA1 expression and AAT protein levels. We also studied the impact of SERPINA1 expression and AAT protein on H1975 and H661 cell behavior, in vitro. Lower SERPINA1 expression in tumor but higher in adjacent non-tumor lung tissues (n = 351, p = 0.016) as well as higher serum levels of AAT protein (n = 170, p = 0.033) were associated with worse survival rates. Specifically, in NSCLC stage III patients, higher blood AAT levels (>2.66 mg/mL) correlated with a poor survival (p = 0.002). Intriguingly, levels of serum AAT do not correlate with levels of C-reactive protein, neutrophils-to-leukocyte ratio, and do not correlate with SERPINA1 expression or AAT staining in the tumor tissue. Additional experiments in vitro revealed that external AAT and/or overexpressed SERPINA1 gene significantly improve cancer cell migration, colony formation and resistance to apoptosis. SERPINA1 gene and AAT protein play an active role in the pathogenesis of lung cancer and not just reflect inflammatory reaction related to cancer development.This study was supported in part by the German Centre for Lung Research, grant numbers 82DZL00402 and 82DZL002A1.S

    Oligomeric protein interference validates druggability of aspartate interconversion in Plasmodium falciparum

    Get PDF
    The appearance of multi-drug resistant strains of malaria poses a major challenge to human health and validated drug targets are urgently required. To define a protein's function in vivo and thereby validate it as a drug target, highly specific tools are required that modify protein function with minimal cross-reactivity. While modern genetic approaches often offer the desired level of target specificity, applying these techniques is frequently challenging-particularly in the most dangerous malaria parasite, Plasmodium falciparum. Our hypothesis is that such challenges can be addressed by incorporating mutant proteins within oligomeric protein complexes of the target organism in vivo. In this manuscript, we provide data to support our hypothesis by demonstrating that recombinant expression of mutant proteins within P. falciparum leverages the native protein oligomeric state to influence protein function in vivo, thereby providing a rapid validation of potential drug targets. Our data show that interference with aspartate metabolism in vivo leads to a significant hindrance in parasite survival and strongly suggest that enzymes integral to aspartate metabolism are promising targets for the discovery of novel antimalarials

    Krüppel-like zinc finger proteins in end-stage COPD lungs with and without severe alpha1-antitrypsin deficiency

    Get PDF
    ABSTRACT: BACKGROUND: Chronic obstructive pulmonary disease (COPD) is influenced by environmental and genetic factors. An important fraction of COPD cases harbor a major genetic determinant, inherited ZZ (Glu342Lys) alpha1-antitrypsin deficiency (AATD). A study was undertaken to investigate gene expression patterns in end-stage COPD lungs from patients with and without AATD. METHODS: Explanted lungs of end-stage ZZ AATD-related (treated and non-treated with AAT augmentation therapy) and "normal" MM COPD, and liver biopsies from patients suffering from liver cirrhosis with and without ZZ AATD were used for gene expression analysis by Affymetrix microarrays or RT-PCR. RESULTS: A total of 162 genes were found to be differentially expressed (p-value [less than or equal to] 0.05 and |FC| [greater than or equal to] 2) between MM and ZZ COPD patients. Of those, 134 gene sets were up-regulated and 28 were down-regulated in ZZ relative to MM lung tissue. A subgroup of genes, zinc finger protein 165, snail homolog 1 (Drosophila) (SNAI1), and Kruppel-like transcription factors (KLFs) 4 (gut), 9 and 10, perfectly segregated ZZ and MM COPD patients. The higher expression of KLF 9 and KLF10 has been verified in the replication cohort with AATD-related end-stage lung emphysema and liver cirrhosis. Furthermore, higher expression of KLF9, SNAI1 and DEFA1 was found in ZZ COPD lungs without augmentation therapy relative to MM COPD or ZZ COPD with augmentation therapy. CONCLUSIONS: These results reveal the involvement of transcriptional regulators of the zinc-finger family in COPD pathogenesis and provide deeper insight into the pathophysiological mechanisms of COPD with and without AATD

    Plasma levels of α1-antitrypsin-derived C-terminal peptides in PiMM and PiZZ COPD patients

    Get PDF
    Plasma levels of α1-antitrypsin-derived C-terminal peptides might be valid as novel biomarkers to predict and/or characterise exacerbations in PiMM and PiZZ COPD patients, or to reflect the efficiency of augmentation therapy in PiZZ patients https://bit.ly/3rNJeLd.This study was supported by Deutsches Zentrum für Lungenforschung grant 82DZL002B1 and Narodowe Centrum Badań i Rozwoju NCN Grant 2018/29/B/NZ5/02346. Funding information for this article has been deposited with the Crossref Funder Registry.S

    Alpha1-antitrypsin protects lung cancer cells from staurosporine-induced apoptosis: the role of bacterial lipopolysaccharide

    No full text
    Abstract Elevated levels of plasma alpha1-antitrypsin (AAT) correlate with a poor prognosis of various cancers. Herein, we investigated effects of exogenous AAT on non-small lung cancer cell lines with high (H1975) and very low (H661) baseline expression of SERPINA1 gene encoding AAT protein. Comparison of cells grown for 3 weeks in a regular medium versus medium supplemented with 2 mg/ml of AAT revealed that in the presence of AAT cells acquire better proliferative properties, resistance to staurosporine (STS)-induced apoptosis, and show higher expression of CLU, a pro-tumorigenic gene coding clusterin protein. Similarly, the co-administration of STS with AAT or addition of AAT to the cells pre-treated with STS abrogated effects of STS in both cell lines. Following experiments with H1975 cells have shown that AAT blocks critical steps in STS-induced cell death: inhibition of AKT/MAPK pathways, and activation of caspase 3 and autophagy. AAT does not inhibit apoptosis-triggered by chloroquine (inhibitor of autophagy) or streptonigrin (inducer of p53 pathway). The anti-apoptotic effects of AAT were unaffected by lipopolysaccharide (LPS). However, AAT induced TLR4 levels and enhanced LPS effects on the production of IL-6, a tumor-promoting cytokine. Our data provide further evidence that AAT plays a significant role in the tumorigenesis

    Effect of Alpha-1 Antitrypsin on CFTR Levels in Primary Human Airway Epithelial Cells Grown at the Air-Liquid-Interface

    No full text
    The cystic fibrosis transmembrane conductance regulator (CFTR) gene is influenced by the fundamental cellular processes like epithelial differentiation/polarization, regeneration and epithelial–mesenchymal transition. Defects in CFTR protein levels and/or function lead to decreased airway surface liquid layer facilitating microbial colonization and inflammation. The SERPINA1 gene, encoding alpha1-antitrypsin (AAT) protein, is one of the genes implicated in CF, however it remains unknown whether AAT has any influence on CFTR levels. In this study we assessed CFTR protein levels in primary human lung epithelial cells grown at the air-liquid-interface (ALI) alone or pre-incubated with AAT by Western blots and immunohistochemistry. Histological analysis of ALI inserts revealed CFTR- and AAT-positive cells but no AAT-CFTR co-localization. When 0.5 mg/mL of AAT was added to apical or basolateral compartments of pro-inflammatory activated ALI cultures, CFTR levels increased relative to activated ALIs. This finding suggests that AAT is CFTR-modulating protein, albeit its effects may depend on the concentration and the route of administration. Human lung epithelial ALI cultures provide a useful tool for studies in detail how AAT or other pharmaceuticals affect the levels and activity of CFTR
    corecore