42 research outputs found

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    CAUSES OF INTOEING GAIT IN CHILDREN WITH CEREBRAL PALSY

    No full text

    Novel calmodulin mutations associated with congenital long QT syndrome affect calcium current in human cardiomyocytes.

    No full text
    Calmodulin (CaM) mutations are associated with cardiac arrhythmia susceptibility including congenital long QT syndrome (LQTS). The purpose of this study was to determine the clinical, genetic, and functional features of 2 novel CaM mutations in children with life-threatening ventricular arrhythmias. The clinical and genetic features of 2 congenital arrhythmia cases associated with 2 novel CaM gene mutations were ascertained. Biochemical and functional investigations were conducted on the 2 mutations. A novel de novo CALM2 mutation (D132H) was discovered by candidate gene screening in a male infant with prenatal bradycardia born to healthy parents. Postnatal course was complicated by profound bradycardia, prolonged corrected QT interval (651 ms), 2:1 atrioventricular block, and cardiogenic shock. He was resuscitated and was treated with a cardiac device. A second novel de novo mutation in CALM1 (D132V) was discovered by clinical exome sequencing in a 3-year-old boy who suffered a witnessed cardiac arrest secondary to ventricular fibrillation. Electrocardiographic recording after successful resuscitation revealed a prolonged corrected QT interval of 574 ms. The Ca(2+) affinity of CaM-D132H and CaM-D132V revealed extremely weak binding to the C-terminal domain, with significant structural perturbations noted for D132H. Voltage-clamp recordings of human induced pluripotent stem cell-derived cardiomyocytes transiently expressing wild-type or mutant CaM demonstrated that both mutations caused impaired Ca(2+)-dependent inactivation of voltage-gated Ca(2+) current. Neither mutant affected voltage-dependent inactivation. Our findings implicate impaired Ca(2+)-dependent inactivation in human cardiomyocytes as the plausible mechanism for long QT syndrome associated with 2 novel CaM mutations. The data further expand the spectrum of genotype and phenotype associated with calmodulinopathy
    corecore