105 research outputs found

    TGF beta type II receptor signaling controls Schwann cell death and proliferation in developing nerves

    Get PDF
    During development, Schwann cell numbers are precisely adjusted to match the number of axons. It is essentially unknown which growth factors or receptors carry out this important control in vivo. Here, we tested whether the type II transforming growth factor (TGF)beta receptor has a role in this process. We generated a conditional knock-out mouse in which the type II TGF beta receptor is specifically ablated only in Schwann cells. Inactivation of the receptor, evident at least from embryonic day 18, resulted in suppressed Schwann cell death in normally developing and injured nerves. Notably, the mutants also showed a strong reduction in Schwann cell proliferation. Consequently, Schwann cell numbers in wild-type and mutant nerves remained similar. Lack of TGF beta signaling did not appear to affect other processes in which TGF beta had been implicated previously, including myelination and response of adult nerves to injury. This is the first in vivo evidence for a growth factor receptor involved in promoting Schwann cell division during development and the first genetic evidence for a receptor that controls normal developmental Schwann cell death

    Interaction between Sulfated Zirconia and Alkanes: Prerequisites for Active Sites – Formation and Stability of Reaction Intermediates

    No full text
    Two sulfated zirconia catalysts were prepared via sulfation and calcination at 873 K of zirconium hydroxide aged at room temperature for 1 h (SZ-1) or aged at 373 K for 24 h (SZ-2). SZ-1 was active for n-butane isomerisation at 373 K; SZ-2 reached similar performance only at 473 K. Both materials contained about 9 wt% sulfate and were tetragonal. Due to a BET lower surface area (105 m2/g vs. 148 m2/g) SZ-1 featured a higher sulfate density, and XRD and EXAFS analysis showed larger (ca. 10 nm) and more well ordered crystals than for SZ-2. n-Butane TPD on SZ-1 showed a butene desorption peak at low temperature, whereas, no obvious butene desorption was observed with SZ-2, suggesting that SZ-1 has a higher oxidizing power at low temperature than SZ-2. The number of sites capable of dehydrogenation are less than 5 µmol/g, because the differential heats of n-butane adsorption as measured by microcalorimetry were 45–60 kJ/mol for higher coverages, indicating weak and reversible interaction. TAP experiments describe the adsorption and desorption behavior of n-butane at different activity states and are the basis for a simple adsorption model. Reactant pulses and purge experiments show that the active species, presumably formed in an oxidative dehydrogenation step, are stable at the surface under reaction conditions

    Loss of SOX10 function contributes to the phenotype of human Merlin-null schwannoma cells.

    Get PDF
    Loss of the Merlin tumour suppressor causes abnormal de-differentiation and proliferation of Schwann cells and formation of schwannoma tumours in patients with neurofibromatosis type 2. Within the mature peripheral nerve the normal development, differentiation and maintenance of myelinating and non-myelinating Schwann cells is regulated by a network of transcription factors that include SOX10, OCT6 (now known as POU3F1), NFATC4 and KROX20 (also known as Egr2). We have examined for the first time how their regulation of Schwann cell development is disrupted in primary human schwannoma cells. We find that induction of both KROX20 and OCT6 is impaired, whereas enforced expression of KROX20 drives both myelin gene expression and cell cycle arrest in Merlin-null cells. Importantly, we show that human schwannoma cells have reduced expression of SOX10 protein and messenger RNA. Analysis of mouse SOX10-null Schwann cells shows they display many of the characteristics of human schwannoma cells, including increased expression of platelet derived growth factor receptor beta (PDGFRB) messenger RNA and protein, enhanced proliferation, increased focal adhesions and schwannoma-like morphology. Correspondingly, reintroduction of SOX10 into human Merlin-null cells restores the ability of these cells to induce KROX20 and myelin protein zero (MPZ), localizes NFATC4 to the nucleus, reduces cell proliferation and suppresses PDGFRB expression. Thus, we propose that loss of the SOX10 protein, which is vital for normal Schwann cell development, is also key to the pathology of Merlin-null schwannoma tumours

    Structural and Active Site Characterization of Sulfated Zirconia Catalysts for Light Alkane Isomerization

    No full text
    Two different sulfated zirconia catalysts were produced through precipitation from zirconyl nitrate solutions, followed by aging of the precipitate either at 298 K for 1 h (SZ-1) or 373 K for 24 h (SZ-2). After drying, the samples were sulfated with ammonium sulfate and calcined for 3 h at 873 K. SZ-1 had a smaller surface area (90 m2 g-1) than SZ-2 (140 m2 g-1) but displayed a one order of magnitude higher maximum n-butane isomerization rate (373–423 K, 1–5 kPa n-butane at 101.3 kPa total pressure). Both materials consisted predominantly of tetragonal ZrO2, contained 9 wt% of sulfate, and adsorbed about 0.5 mmol g-1 NH3. Measurements of adsorption isotherms and differential heats for propane and iso-butane at 313 K reveal a larger number of adsorption sites on SZ-1 than on SZ-2, extrapolated to 1 kPa, 42 vs. 20 µmol g-1 (propane) and 120 vs. 44 µmol g-1 (iso-butane). At coverages > 2 µmol g-1 the heats were similar for both samples with both probes and decreased from 60 to 40 kJ mol-1. Temporal analysis of products measurements indicated shorter residence times for n-butane than for iso-butane, and SZ-1 retained both of these molecules longer than SZ-2. The activation energy for n-butane desorption was 45 kJ mol-1 for both samples. Interaction with pulses of CO2 suggested that non-sulfated, basic ZrO2 surface is exposed on SZ-2, consistent with the larger surface area at the same sulfate content as SZ-1. The results suggest that only a fraction of the sulfate groups participates in adsorption and that product desorption may be of importance

    Structural and Active Site Characterization of Sulfated Zirconia Catalysts for Light Alkane Isomerization

    No full text
    Sulfated zirconia (SZ) is active for light alkane isomerization at temperatures as low as 373 K [1]. The material has been investigated extensively in the past 2 decades [2] but so far no convincing structure-activity relationship has been established. Here, we report on the investigation of two different SZ materials with an interesting combination of properties. Both materials have a sulfate content of 9 wt.%; however, the material with lower specific surface area (SZ-1, 90 m2og-1) displays a maximum n-butane isomerization rate (373-423 K, 1-5 kPa n-butane at 101.3 kPa total pressure) that is about one order of magnitude higher than that of the material with higher specific surface area (SZ-2, 140 m2og-1). Both materials were produced through precipitation from zirconyl nitrate solution, followed by aging of the precipitate either at 298 K for 1 h (SZ-1) or 373 K for 24 h (SZ-2). After drying, the samples were sulfated with ammonium sulfate and calcined for 3 h at 873 K. Scanning electron microscopy showed typical particle sizes of 5 to 20 µm for SZ-1, and of 1 to 5 µm for SZ-2. X-ray diffraction and Zr K-edge X-ray absorption spectra identified both materials as predominantly tetragonal ZrO2, but SZ-2 exhibited smaller crystalline domains than SZ-1 (7.5 vs. 10 nm). Diffuse reflectance IR spectra taken during catalyst activation (523 K, inert gas) suggest that the sulfate structures on the two materials rearrange in a slightly different way during dehydration. This is tentatively attributed to different sulfate group densities that result from the ratios of sulfate content to surface area. By ammonia adsorption/desorption, the concentration of acid sites was determined to be 0.52 and 0.48 mmolog-1 for SZ-1 and SZ-2, respectively; this result is not reflected by the catalytic activities. Temporal analysis of products measurements indicated that the residence times for n-butane were shorter than for i-butane, and SZ-1 retained both these molecules longer than SZ-2. The activation energy for n-butane desorption was equivalent for both samples, i.e., 40-41 kJomol-1. Calorimetric measurements of the adsorption of reactant and product at 313 K produced the following results. At 0.3 kPa alkane pressure, SZ-1 and SZ-2 adsorbed similar amounts of n-butane (20 and 25 µmol), but very different amounts of i-butane (80 and 25 µmol). At coverages below 2 µmol the differential heats of adsorption of n-butane were much higher on SZ-2 than on SZ-1, while at higher coverages the heats were nearly identical for both samples and decreased from 60 to 40 kJomol-1. The samples did not differ with respect to the strength of interaction with i-butane, the heats decreased with increasing coverage from 60 to 40 kJomol-1. The results demonstrate that (i) typical SZ catalysts have fewer than 100 µmolog-1 sites, rendering identification by spectroscopic techniques difficult, and (ii) product desorption is a critical factor for the catalytic performance. References: [1] M. Hino, K. Arata, J. Chem. Soc. Chem. Comm. (1980) 851. [2] X. Song, A. Sayari, Catal. Rev. Sci. Eng., 38 (1996) 32

    A nonsense mutation in Myelin Protein Zero causes congenital hypomyelination neuropathy through altered P0 membrane targeting and gain of abnormal function

    Get PDF
    Protein Zero (P0) is the major structural protein in peripheral myelin and mutations in the Myelin Protein Zero (Mpz) gene produce wide ranging hereditary neuropathy phenotypes. To gain insight in the mechanisms underlying a particularly severe form, congenital hypomyelination (CH), we targeted mouse Mpz to encode P0Q215X, a nonsense mutation associated with the disease, that we show escapes nonsense mediated decay and is expressed in CH patient nerves. The knock-in mice express low levels of the resulting truncated protein, producing a milder phenotype when compared to patients, allowing to dissect the subtle pathogenic mechanisms occurring in otherwise very compromised peripheral myelin. We find that P0Q215X does not elicit an unfolded protein response, which is a key mechanism for other pathogenic MPZ mutations, but is instead in part aberrantly trafficked to non-myelin plasma membranes and induces defects in radial sorting of axons by Schwann cells (SC). We show that the loss of the C-terminal YAML motif is responsible for P0 mislocalisation, as its addition is able to restore correct P0Q215X trafficking in vitro. Lastly, we show that P0Q215X acts through dose-dependent gain of abnormal function, as wildtype P0 is unable to rescue the hypomyelination phenotype. Collectively, these data indicate that alterations at the premyelinating stage, linked to altered targeting of P0, may be responsible for CH, and that different types of gain of abnormal function produce the diverse neuropathy phenotypes associated with MPZ, supporting future allele-specific therapeutic silencing strategies

    Two novel missense mutations in the myelin protein zero gene causes Charcot-Marie-Tooth type 2 and Déjérine-Sottas syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Charcot-Marie-Tooth (CMT) phenotype caused by mutation in the <it>myelin protein zero (MPZ) </it>gene varies considerably, from early onset and severe forms to late onset and milder forms. The mechanism is not well understood. The myelin protein zero (P<sub>0</sub>) mediates adhesion in the spiral wraps of the Schwann cell's myelin sheath. The crystalline structure of the extracellular domain of the myelin protein zero (P<sub>0</sub>ex) is known, while the transmembrane and intracellular structure is unknown.</p> <p>Findings</p> <p>One novel missense mutation caused a milder late onset CMT type 2, while the second missense mutation caused a severe early onset phenotype compatible with Déjérine-Sottas syndrome.</p> <p>Conclusions</p> <p>The phenotypic variation caused by different missense mutations in the <it>MPZ </it>gene is likely caused by different conformational changes of the MPZ protein which affects the functional tetramers. Severe changes of the MPZ protein cause dysfunctional tetramers and predominantly uncompacted myelin, i.e. the severe phenotypes congenital hypomyelinating neuropathy and Déjérine-Sottas syndrome, while milder changes cause the phenotypes CMT type 1 and 2.</p
    corecore