3 research outputs found

    Increasing genetic variability in black oats using gamma irradiation

    Get PDF
    The black oat (Avena strigosa Schreb) is commonly used for forage, soil cover, and green manure. Despite its importance, little improvement has been made to this species, leading to high levels of genotypic disuniformity within commercial cultivars. The objective of this study was to evaluate the efficiency of different doses of gamma rays [ ^60 Co] applied to black oat seeds on the increase of genetic variability of agronomic traits. We applied doses of 0, 10, 50, 100, and 200 Gy to the genotype ALPHA 94087 through exposure to [ ^60 Co]. Two experiments were conducted in the winter of 2008. The first aimed to test forage trait measurements such as plant height, dry matter yield, number of surviving tillers, and seedling stand. The second test assessed seed traits, such as yield and dormancy levels. Gamma irradiation seems not to increase seed yield in black oats, but it was effective in generating variability for the other traits. Tiller number and plant height are important selection traits to increase dry matter yield. Selection in advanced generations of mutant populations can increase the probability of identifying superior genotypes

    Abiotic stress and genome dynamics: specific genes and transposable elements response to iron excess in rice

    Get PDF
    International audienceBackground: Iron toxicity is a root related abiotic stress, occurring frequently in flooded soils. It can affect the yield of rice in lowland production systems. This toxicity is associated with high concentrations of reduced iron (Fe 2+) in the soil solution. Although the first interface of the element is in the roots, the consequences of an excessive uptake can be observed in several rice tissues. In an original attempt to find both genes and transposable elements involved in the response to an iron toxicity stress, we used a microarray approach to study the transcriptional responses of rice leaves of cv. Nipponbare (Oryza sativa L. ssp. japonica) to iron excess in nutrient solution. Results: A large number of genes were significantly up-or down-regulated in leaves under the treatment. We analyzed the gene ontology and metabolic pathways of genes involved in the response to this stress and the cis-regulatory elements (CREs) present in the promoter region of up-regulated genes. The majority of genes act in the pathways of lipid metabolic process, carbohydrate metabolism, biosynthesis of secondary metabolites and plant hormones. We also found genes involved in iron acquisition and mobilization, transport of cations and regulatory mechanisms for iron responses, and in oxidative stress and reactive oxygen species detoxification. Promoter regions of 27% of genes up-regulated present at least one significant occurrence of an ABA-responsive CRE. Furthermore, and for the first time, we were able to show that iron stress triggers the up-regulation of many LTR-retrotransposons. We have established a complete inventory of transposable elements transcriptionally activated under iron excess and the CREs which are present in their LTRs
    corecore