6,339 research outputs found

    Dynamic behavior of value and growth stocks

    Get PDF
    The difference between the performance of growth and value portfolios presents an interesting puzzle for researchers in finance. Most studies showed that value stocks outperform growth stocks. This is the so-called value premium. In this article, we try to find an answer to the question as to why value stocks generate superior returns to growth stocks by dividing growth and value stocks into switching- and fixed-style stocks. We show that the difference in returns between value and growth stocks is caused by frequently rebalancing portfolios and find a value premium for the switching-style stocks and a growth premium for the fixed-style stocks. We will try to find an explanation for this phenomenon using the behavioral finance explanation that investors are unable to process information correctly. We use earnings announcement return data to test whether expectations of investors about future growth are too extreme.

    Effects of medical school selection:on the motivation of the student population and applicant pool

    Get PDF
    Croiset, G. [Promotor]Kusurkar, R.A. [Copromotor

    Correlations in Free Fermionic States

    Full text link
    We study correlations in a bipartite, Fermionic, free state in terms of perturbations induced by one party on the other. In particular, we show that all so conditioned free states can be modelled by an auxiliary Fermionic system and a suitable completely positive map.Comment: 17 pages, no figure

    Longitudinal static optical properties of hydrogen chains: finite field extrapolations of matrix product state calculations

    Get PDF
    We have implemented the sweep algorithm for the variational optimization of SU(2) x U(1) (spin and particle number) invariant matrix product states (MPS) for general spin and particle number invariant fermionic Hamiltonians. This class includes non-relativistic quantum chemical systems within the Born-Oppenheimer approximation. High-accuracy ab-initio finite field results of the longitudinal static polarizabilities and second hyperpolarizabilities of one-dimensional hydrogen chains are presented. This allows to assess the performance of other quantum chemical methods. For small basis sets, MPS calculations in the saturation regime of the optical response properties can be performed. These results are extrapolated to the thermodynamic limit.Comment: Submitted to J. Chem. Phy

    Spatial and spectral shape of inhomogeneous non-equilibrium exciton-polariton condensates

    Full text link
    We develop a mean-field theory of the spatial profile and the spectral properties of polariton condensates in nonresonantly pumped semiconductor microcavities in the strong coupling regime. Predictions are obtained for both the continuous-wave and the pulsed excitation regimes and the specific signatures of the non-equilibrium character of the condensation process are pointed out. A striking sensitivity of the condensate shape on the optical pump spot size is demonstrated by analytical and numerical calculations, in good quantitative agreement with recent experimental observations.Comment: 5 pages, 3 figure

    Energy-weighted density matrix embedding of open correlated chemical fragments

    Get PDF
    We present a multi-scale approach to efficiently embed an ab initio correlated chemical fragment described by its energy-weighted density matrices, and entangled with a wider mean-field many-electron system. This approach, first presented in Phys. Rev. B, 98, 235132 (2018), is here extended to account for realistic long-range interactions and broken symmetry states. The scheme allows for a systematically improvable description in the range of correlated fluctuations out of the fragment into the system, via a self-consistent optimization of a coupled auxiliary mean-field system. It is discussed that the method has rigorous limits equivalent to existing quantum embedding approaches of both dynamical mean-field theory, as well as density matrix embedding theory, to which this method is compared, and the importance of these correlated fluctuations is demonstrated. We derive a self-consistent local energy functional within the scheme, and demonstrate the approach for Hydrogen rings, where quantitative accuracy is achieved despite only a single atom being explicitly treated.Comment: 14 pages, 8 figure

    Controlling the pair momentum of the FFLO state in a 3D Fermi gas through a 1D periodic potential

    Full text link
    The question whether a spin-imbalanced Fermi gas can accommodate the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state has been the subject of intense study. This state, in which Cooper pairs obtain a nonzero momentum, has hitherto eluded experimental observation. Recently, we demonstrated that the FFLO state can be stabilized in a 3D Fermi gas, by adding a 1D periodic potential. Until now it was assumed that the FFLO wave vector always lies parallel to this periodic potential (FFLO-P). In this contribution we show that, surprisingly, the FFLO wave vector can also lie skewed with respect to the potential (FFLO-S). Starting from the partition sum, the saddle-point free energy of the system is derived within the path-integral formalism. Minimizing this free energy allows us to study the different competing ground states of the system. To qualitatively understand the underlying pairing mechanism, we visualize the Fermi surfaces of the spin up and spin down particles. From this visualization, we find that tilting the FFLO wave vector with respect to the direction of the periodic potential, can result in a larger overlap between the pairing bands of both spin species. This skewed FFLO state can provide an additional experimental signature for observing FFLO superfluidity in a 3D Fermi gas.Comment: 19 pages, 3 figure
    corecore