20 research outputs found

    In-event background and signal reconstruction for two-photon invariant-mass analyses

    Get PDF
    A method is presented for the reconstruction of both the background and signal in invariant-mass analyses for two-photon decays. The procedure does not make use of event mixing techniques and as such is based exclusively on an event-by-event analysis. Consequently, topological correlations of the event (e.g. jet structures) are automatically taken into account. By means of the decay process π0γγ\pi^{0} \to \gamma \gamma it will be demonstrated how the procedure allows for determination of the π0\pi^{0} yield from the observed decay photons

    Simple SIMON: FPGA implementations of the SIMON 64/128 Block Cipher

    Full text link
    In this paper we will present various hardware architecture designs for implementing the SIMON 64/128 block cipher as a cryptographic component offering encryption, decryption and self-contained key-scheduling capabilities and discuss the issues and design options we encountered and the tradeoffs we made in implementing them. Finally, we will present the results of our hardware architectures' implementation performances on the Xilinx Spartan-6 FPGA series.Comment: 20 page

    Efficient Magnetization Reversal with Noisy Currents

    Full text link
    We propose to accelerate reversal of the ferromagnetic order parameter in spin valves by electronic noise. By solving the stochastic equations of motion we show that the current-induced magnetization switching time is drastically reduced by a modest level of externally generated current (voltage) noise. This also leads to a significantly lower power consumption for the switching process.Comment: 4 pages, 3 figure

    Non-collinear single-electron spin-valve transistors

    Full text link
    We study interaction effects on transport through a small metallic cluster connected to two ferromagnetic leads (a single-electron spin-valve transistor) in the "orthodox model" for the Coulomb blockade. The non-local exchange between the spin accumulation on the island and the ferromagnetic leads is shown to affect the transport properties such as the electric current and spin-transfer torque as a function of the magnetic configuration, gate voltage, and applied magnetic field.Comment: 4 pages, 3 figure

    Sponges and Engines: An introduction to Keccak and Keyak

    Get PDF
    In this document we present an introductory overview of the algorithms and design components underlying the Keccac cryptographic primitive and the Keyak encryption scheme for authenticated (session-supporting) encryption. This document aims to familiarize readers with the basic principles of authenticated encryption, the Sponge and Duplex constructions (full-state, keyed as well as regular versions), the permutation functions underlying Keccak and Keyak as well as Keyak v2\u27s Motorist mode of operation

    Exchange effects on electron transport through single-electron spin-valve transistors

    Full text link
    We study electron transport through single-electron spin-valve transistors in the presence of non-local exchange between the ferromagnetic leads and the central normal-metal island. The Coulomb interaction is described with the orthodox model for Coulomb blockade and we allow for noncollinear lead magnetization directions. Two distinct exchange mechanisms that have been discussed in the literature are shown to be of comparable strength and are taken into account on equal footing. We present results for the linear conductance as a function of gate voltage and magnetic configuration, and discuss the response of the system to applied magnetic fields.Comment: 15 pages, 6 figure
    corecore